Quantitative measurement of Gestalt factors and perceptual information-processing

Tadasu OYAMA

Nihon University*

First, eight quantitative experiments conducted by the present author and his collaborators on Gestalt factors are reviewed. These are concerned with perceptual grouping in simultaneous, successive and moving patterns, as well as perceptual transparency, pattern masking, apparent motion, and span of attention (Figures 1-9). For example, factor of proximity is compared with factor of similarities in color, lightness, size and form, varying separation between stimulus objects in bi-stable situations (Figures 1 and 6) The matched separations are used as the measures of similarities and compared between different stimulus dimensions. Factors of common fate and symmetry are also examined, using moving dots (Figure 5). Secondly, the functions and functioning levels of these Gestalt factors and the law of minimal changes are discussed in relation to perceptual information-processing.

Key words: Gestalt factors, grouping, apparent motion, similarity, proximity

Wertheimer (1923) は、単純な点や線の図形を用いて、それに直接関係のものとしてでなく、おのずからまとまって見える群化 (grouping) の現象を例として、知覚の体制化を規定する要因を探求し、このような諸要因（または法制）を挙げた。これらはゲシュタルト要因（法則）とも呼ばれる (Metzger, 1953: 盛永, 1957).

① 近接の要因
② 類同の要因
③ 閉合の要因
④ なめらかな経過（あるいはよい連続）の要因
⑤ よい形の要因
⑥ 共通運命の要因

⑦ 客観的構えの要因
⑧ 過去経験の要因

これらの要因については、群化をはじめとする多くの知覚現象の重要な要因として繰り返し多くの教科書に記述されてきたが、多くの場合これらの諸要因は並列的に列挙されていて、それらの影響力の相対的比較や量的測定は乏しかった (大山, 2000).

以下では、主として筆者らがこれらの要因の効果の量的測定を目指して成績を上げた実験的研究結果を紹介し、知覚情報処理との関連を論じる。

群化における類同の要因の量的測定

これらのゲシュタルトの諸要因は相対的比較や量的測定が可能である。例えば近接の要因と類同の要因の場合、Wertheimer (1923) 自身がすでに示しているように、Figure 1 のような刺激配置を用いて、両者の効果が比較できる。Figure 1 に 4 行 4 列に並んだ小円は上下の間隔が近接しており、近接の要因によって縦 4 列にまとまって見えることもあるし、左右には同じ色の小円
Figure 1. Similarity versus proximity in perceptual grouping (Oyama, Simizu, & Tozawa, 1999)

が並んでいるから、類同の要因に基づき横4行にまとまって見えることもある。この2つのまとまり方のいずれかが優勢かなによって、近接の要因と類同の要因の効果が比較できる。その際、上下の間隔と左右の間隔の関係を調整すれば、縦のまとまりの傾向と横のまとまりの傾向が均等に配置される。Oyama, Simizu, & Tozawa (1999) は Figure 1 ような上下間隔が一定で左右間隔が変化する刺激配置を用い、各刺激対象の色・輝度・形・大きさの類同性を変化させて実験的に縦横のまとまりの起こりやすさの均衡点を求めた。

実験では Figure 1 のような刺激がコンピュータ画面（観察距離 57 cm）に 3 s ずつ提示され、被験者は縦にまとまるか、横にまとまって見えるかをジョイスティックで反応した。縦反応なら時間間隔が 1 ステップ（視野 15 分）ずつ減少し、横反応なら拡大する。二重上下法で 8 回の転換点から平均を求めた。その間垂直間隔は視角 2 度に一定とした。

赤い、中輝度の、中位の大きさの円が基準の刺激対象とされ、色は赤・緑・青の 3 種、輝度は高 (0.8 cd/ m²)・中 (0.3)・低 (0.07) の 3 段階、大きさは大（直径の視角 1°）の 24 分・中 (42 分)・小 (21 分) の 3 段階、形は等面積の円・正方形・正三角形の 3 種であった。背景輝度は 0.1 cd/m² であった。

実験の第1部では、色・輝度・大きさ・形のうちの 1 つの属性だけが変えられ、他の属性は基準の状態に保たれた。その結果得られた均衡点における左右間隔を、各シリーズにおける対照実験（16 対象が全部同一）での均衡間隔の平均（約 2 度）を母方とした比（相対値）で表わすと次のようなとなった。

色シリーズ
赤—緑 1.46, 緑—青 1.50, 赤—青 1.77
輝度シリーズ
高—中 1.47, 中—低 1.77, 高—低 2.06

大きさシリーズ
大—中 1.44, 中—小 1.37, 大—小 1.59
形シリーズ
円—正方形 1.32, 正方形—三角形 1.35, 円—三角形 1.40

これらの結果では、刺激対象間の輝度や大きさの差が大きいほど、水平の群化と垂直の群化の生長率が均衡するための時間間隔（均衡間隔）が大きかった。例えば大きさシリーズでは、中、中小の組み合わせよりも大小の組み合わせで、均衡間隔が大となった。また輝度シリーズでは、中、中低の組み合わせよりも、高低の組み合わせの方が、均衡間隔が大となった。つまり大小、高低など類似性が少ない組み合わせになるほど、それに均衡する時間間隔が大に（近接性が低い）になった。刺激特性の量化が容易なこれらの大きさ・輝度シリーズの結果に対して、刺激特性と均衡間隔の関の関数関係を求めたところ、べき関数関係が認められた。すなわち、均衡間隔は直線比のほぼ 1/2 乗、輝度比のほぼ 1/3 乗に比例して増大した。これらはマニューチュード推定法などの具体的な判断を用いずに得られた一種の機能的な感覚尺度といえよう。

このような結果に基づけば、均衡間隔を指数として類似性の大きさを測定できることが分かる。次にこの類似性測定法を刺激の量化が困難な色・形シリーズに適用すれば、色シリーズでは、赤—緑間、緑—青間、赤—緑間により均衡間隔が大、したがって類似性が低いこととなる。形シリーズでは、円—正方形間の間は円—正方形間および正方形—正三角形間より、均衡間隔が大、類似性が低いことが示された。

またこの方法によれば、異なったシリーズ間で結果を比較しそれぞれの違いの大きさが知覚的属性上の差異を、均衡間隔という同一尺度上で互いに比較することができる。この結果によれば、赤と緑の色差の類似性（均衡間隔 1.46）が、1:2:7 の輝度の差異、1:2 の大きさ（直径）の差異、円と三角形の形の差異を機能的にほぼ等価であることが示された。

実験の第2部では、色・輝度・大きさ・形の差を重畳させて刺激を用いて、異なった知覚属性の類同性—異質性
大山：ゲシュタルト諸要因の量的測定と知覚情報処理

性が群化に加算的に作用するか否かを様々な属性において差の組み合わせ条件で検討した。その結果をあらためて対照実験の均衡間隔との比の平均で示すと次のようなようになった。

1属性差（4条件）：1.22，2属性差（6条件）：1.40，
3属性差（4条件）：1.52，4属性差（1条件）：1.79

色だけに、輝度だけという組に1つの属性だけ差する刺激対象の組み合わせよりも、色と輝度を交わるというような2つの属性で差する刺激対象の組み合わせ、さらには、色と輝度の大きさなどの3属性で差する刺激対象の組み合わせ、色と輝度、大きさの4つの属性で差している刺激対象の組み合わせとなるほど、順次に増加する水準間隔が大となった。すなわち差異のある属性数が増加するほど均衡間隔が増大した。すなわち、色と輝度、大きさの3属性にわたる差異が、非群形的ではあるが、加算的に働き、類似性を有する。差異を持つ対象間の（垂直方向）群化の生起を妨害することを示している。ここで主用踏刺激条件内では、均衡距離は属性数の約1/3乗に比例して増大した。

透明視と群化

Figure 2のような透明視図形として知られている図形では、中央の灰色領域は垂直の黒矩形と水平の白矩形が重なった領域として見せる。中央の灰色領域は、半透明の黒い面で覆われた白い矩形の一部に見えた、半透明の白い面の直後にある黒い矩形の一部と見えた。この2つの見え方が交代で現れることが多い、中央の灰色領域が白と黒の2層に分けられて、一方の層が透明であるかのように見えるので、透明視と呼ばれる。ゲシュタルト心理学の立場からは、群化の場合と同様に、類同の要因が働き、上下の黒領域同士か、あるいは左右の白領域同士が中央の灰色領域を隔てて一塊化する傾向があり、その傾向が交差灰色部分を2層に見ることによって実現すると論じられた（Metzger, 1953；盛永, 1952）。

大山・中野（1960）は、Figure 2のような十字型の刺激図を用いて、そのような透明視が生じる際に、白い横長の長方形成り、黒い縦長の長方形成りが上層になっていかなかったかについて、交互差の灰色領域の幅をいろいろ変えて検討した。図一地反転図形と同様に、この透明視図形でも、白黒どちらが上層になるかは、観察者に反応する。そこで、被験者に、この図形を持続観察させて、観察者、白黒いずれかの層が、上層に見えたかに応じて、2つのキーを押し分けるように教示した。その結果では、交互差の明度が白領域に近いほど、白領域が上層になっている時間が長く、交互差明度が白領域の明度に近いほど、白領域が上層になっている時間が長くなかった。その際、明度を反射率の平方根（0.5乗）に比例する数値で表現できると仮定した場合、白黒両領域が上層となっていた時間の比例（Rb）は、次式のように灰色交差部分と白黒領域との明度差に反比例するというきわめて規則的な傾向が認められた。ここで pw, pb, pc はそれぞれ白・黒・交差領域の反射率を示す。

$$Rb = \frac{1}{\sqrt{pc - \sqrt{pb}}} \times 100$$

また筆者らは、Figure 2の白領域を、赤、黄、緑、青の4色のうちの2色の色彩領域に代え、交互差の2層の明度をそれぞれの色の混色とした場合にも、明確な透明視を生じることを確認した。例えば上の腕を赤、左右の腕を緑、交互部分を赤と緑の相補色になる回転色円盤とした場合、白い縦長の長方形成りと緑の横長の長方形成りが重なって見える。その際、どちらが上層になるかは、交互差の色の混色により依存する。すなわち赤と緑の色の混色が高ければ赤が上層になりやすく、緑と赤の色の混色が高ければ緑が上層になりやすかった。赤と緑が上層になる時間比は両者の混色の約2.8乗に比例した。これらの実験結果は透明視にも類同の要因が重要な効果をもつという見解を量的測定で支持している。ただし無彩色の場合と有彩色の場合でかなりべき指数が異なる点は検討を要する。

なお混色率だけでなく、色相自体の影響も認められ、進出色・後退色現象との関連もし示唆された。すなわち進出色といわれる赤、黄は、一般に上層になりやすく、後退色と呼ばれる青は上層になりにくい傾向であった。

また、この透明視現象では、このような明度や色相などの要因だけでなく、形態的要因も重要である。Morinaga, Noguchi, & Ohishi (1962) は、互いに45度で交差する長方形のいずれが上層になりやすいかを大山...
中原と同様の時間計測法で測定した。その結果では、白黒いずれの領域でも、垂直・水平方向に伸びた領域が上層に近くなりやすく、斜め方向の領域は、上層に見えにくかった。因になりやすさにおける異方性と共通する傾向である。この結果も透明視の現象、図一地知覚の問題と総合的に考えるべきであることを示唆している。

時間を超えた群化

同時提示でなく若干時間を隔てて提示される対象間でも知覚的群化が起こるであろう。Oyama & Yamada (1978) は Figure 1 と同様の 4 行 4 列の配置で、（ただしそれぞれの内側の奇数（垂直）列と偶数列を時間を隔てて提示した場合にも水平方向の群化が起こることを見出した。すなわち彼らはタキストスクリーンに用いて第 1・3 列と第 2・4 列のそれぞれ 8 小黒円を 50 ms ずつ、0 ないし 120 ms の種々の時間間隔（SOA, on-on 間隔）で継時に提示して、継の同時的まとまりと横の継時的まとまりが生じる頻度を調べ、継横のまとまりの頻度が均衡する SOA を直線内挿法で求めた。その結果、小黒円間の水平間隔は 20 mm（視角 1.32°）に固定したが、垂直間隔は 25、30、35、40 mm と変化した。

5 名の被験者の結果では、垂直間隔が増大するほど、水平・垂直間で群と生じ頻度が均衡する SOA が下記のように増大した。

<table>
<thead>
<tr>
<th>垂直間隔</th>
<th>均衡 SOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm</td>
<td>31.1 ms</td>
</tr>
<tr>
<td>30 mm</td>
<td>32.6 ms</td>
</tr>
<tr>
<td>35 mm</td>
<td>36.9 ms</td>
</tr>
<tr>
<td>40 mm</td>
<td>45.3 ms</td>
</tr>
</tbody>
</table>

すなわち垂直に並んだ小黒円間の空間的間隔と水平に並んだ小黒円間の時間的間隔（SOA）が競合的に働き、上記の組み合わせで均衡したのである。時間的近接性と空間的近接性が同様な効果を群化に反映させているといえる。したがって前述の同時的群化の実験で確認された近接の要因は時間的近接性にも適用できるといえる。また上記の結果から、空間的近接性と時間的近接性を量的に比較することができる。ラフ心的近接性と空間的近接性の関係は非線形であり、この実験範囲では、均衡 SOA は空間的間隔距離に対して指数関数的に上昇している（ただし群化可能な時間的間隔には上限があるであろう）。

なお Oyama & Yamada は Figure 1 のように黒円と白円が行ごとに交替する刺激パターンを用いても、同様の実験を行い、均衡 SOA が下記のように増大することを観察した。類群の要因の差異が参加するとこの均衡 SOA が大きく変化することを見出した。

<table>
<thead>
<tr>
<th>垂直間隔</th>
<th>均衡 SOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm</td>
<td>69.0 ms</td>
</tr>
<tr>
<td>30 mm</td>
<td>72.0 ms</td>
</tr>
<tr>
<td>35 mm</td>
<td>78.8 ms</td>
</tr>
<tr>
<td>40 mm</td>
<td>82.3 ms</td>
</tr>
</tbody>
</table>

継時に提示される小円の水平間の類同性ならびに同時に提示される垂直間の非類同性が参加すると、継時的群化が可能な時間間隔がさらに増大したのである。水平間の類同性が時間的近接性に不足を補ったといえる。

ここで、物理的には継時に提示された 2 刺激パターンが主観的には同時に見ているために群化が生じたのではないかという疑問が生じる。しかし同じ実験事象、同じ被験者群で同時と感じられる時間間隔を調べた所、約 30 ms であり、得られた均衡 SOA は、これよりも明らかに大きかった。被験者たちは継時に見えながらもまとまって見たと考え報告した。

また継時に刺激された小円間で仮覚運動が生じることによって群化が生じたのではないかとの疑問も起ころう。しかし仮覚運動が生じやすい時間間隔帯よりも継時的群化が生じやすい時間間隔帯は短いか。さらに仮覚運動の生起率は一般に時間間隔の逆 U 字形関数であるが、継時的群化の生起率は時間間隔の単調減少関数である点が異なっている。被験者に見え方を尋ねると、垂直に並ぶ 4 小円がまとまりながら、その全体が水平に運動するという印象も時に生じたと答えている。この場合、群化は垂直仮覚運動は水平に生じわたって、両現象は明らかに独立した現象であることが示された。

継時的統合とマスキング

2 つの図形を継時に提示した場合、それらが知覚的に統合されることによって、まとまりが見えて、そこに新しいうものが生成される場合と、逆に知覚的に統合されることによって個別性が失われる妨害的な場合がある。

例えば Figure 3 で a, b 是に意味のまったたくないランダムドットと見えるが、重ねると c の図のように VOH と読める。a, b を 6 ms ずつ継時に提示すると、81 ms の間隔時間（SOA）までは、50%以上の正答率で文字が読める（Eriksen & Collins, 1967）。同時に 2 つを重ねて提示したときは、約 90%の正答率で答えるが、間隔時間が増大するに従い、正答率は低下する。この過程は、上述の継時的群化の過程と似ている。

他方、継時的統合のために、個別のものが知覚できなくなる場合がある。ある種の継時的マスキングがそれ
大山：デシュタルト著要因の量的測定と知覚情報処理

Figure 3. Temporal integration (Eriksen & Collins, 1967)

Figure 4. Backward masking (Oyama, Watanabe, & Funakawa, 1983)

である。Oyama, Watanabe, & Funakawa (1983) は、Figure 4 のような 1 個から 14 個のランダム配置した斜めのバーからなるテスト効果を 50 ms 提示した後で、0~100 ms の SOA をあけて Figure 4 b, c のような多数のバーからなるマスク（妨害）効果を提示すると、最初のテスト効果のバーの個数が正しく答えられなくなることを見出した。1 個の逆向マスク（backward masking）である。その際、SOA が 0 s のときに、マスク効果が最大で、SOA の増大に伴い次第に減少するが、SOA が 100 ms でも、有意にマスク効果が認められた。マスク効果が b でも c でも正答率では差が認められなかったが、回答されたバーの個数と提示されたバーの個数の相関をとってみると、マスク b の方がマスク c がより相関係数が高かった。ここで相関が高いということは、正答でなくても、回答したバーの個数の大きさが提示されたバーの個数と関連があることを示している。いずれにせよ正答に近い誤りであることを示唆している。その点で、テスト図形 a と同方向の多数のバーをもつマスク図形 b の方がバーの方向が 90 度違うマスク図形 c よりマスク効果が大であることを示している。テスト図形とマスク図形の方向の類同性がマスク効果を大にしている（ただしこの実験は方向検出器の側抑制効果でも説明できる）。

また Oyama et al. は、赤と青の小円群よりなるテスト・マスク団形でも同様の類同性の効果を逆向マスキングと順向マスキング（マスク刺激が先行するマスキング）で見出した。すなわち、テストとマスク団形が同色の場合、異なる場合（赤・青、青・赤）よりもマスク効果が大であった。この点で、このような繊細的マスキングと繊細的群の共通性が認められる。類同の要因がマスキングを生じさせていると考えられる。

なおこのような繊細的マスキングが、テスト・マスク刺激を構成する各小円の側面投影位置の局所的マスキングによる可能性を排除するため、大山（1984）は繊細的的に提示される両刺激の構成小円の位置が重なることのないように配置した場合についても実験した。その結果でも、同色間のマスキングが異色間のマスキングよりも大きい順向・逆向マスキングを生じた。この結果は上記の効果が局所的マスキングに帰すことができないことを示している。またテスト刺激は上記と同様の赤・青ドットパターンとしたまま、マスク刺激を全面赤または青刺激として実験したところまったマスク効果は生じなかった。したがって、この効果は色順応などによるものではないことも確かめられた。

運動対象の群化と共通運動の要因

Wertheimer 以来、共通の運動をする対象は群化しやすいことが共通運動の要因として知られている。大山・野村・吉田（2001）は運動する 3 小円の映像を用いて、共通運動の要因の効果を組織的に検討した。すなわち TV 画面上を垂直に並ぶ 3 小円が左から右へ等速度で運動していく際の群化知覚について実験した。Figure 5 のように、3 小円とも三角形を描き運動する。中央はつねに青小円で 45 度で左昇下降する 3 角波である。それに対しても、上下段は標準（S：中段と同じ）、赤（R：波形が標準と同じ）、逆位相（I：標準向上昇・下降が逆、標準色に週期・振幅は同じ）、半振幅（A：振幅が標準の半分）、4 分の 3 振幅（A；振幅が標準の 4 分の 3）、位相遅れ（D：位相が標準より 0.08 週期の遅れ）に変化する。Figure 5 のように、上下段にこれらを 2 種を組み合わせた 30 刺激をランダム順に 2 回ずつ提示した。

結果は S・R・I はほぼ同等で中段の S と群化しやすいが、A4・D はもともと S と群化する傾向があり、
Aが最も群化し難しいかった。共通運動の要因（運動の同期）の効果が極めて強く、運動対象の色の差異に関係なく群化を生じさせ、類同の要因を圧倒した。またFig.5bのような逆位相の三角波の場合も運動軌跡における対称性の要因（Bahnson,1928;Metzger,1953;Kofka,1935）のためか、まったく反対の類似的な動きをする標準刺激と群化やすいことが示された。続いて大山・野村・吉田（2002）は、位相の遅れと振幅の影響をさらに調べた。その実験結果から、2対象の波動運動の位相差、振幅差はともに群化に影響を与える要因であるが、3/4の位相差、1:10の振幅差があってもなお群化が生じ得ることが示された。

仮現運動と近接・類同の要因
仮現運動（ペーパ運動）が異なった色や形の対象間で

Figure 6. Similarity versus proximity in apparent motion (Oyama, Simizu, & Tozawa, 1999)

も生じることは、早くから知られている（Kolers & von Grinna, 1976）。
Oyama, Simizu, & Tozawa（1999）は、仮現運動に及ぼす2対象間の大きさ、色・明るさ・形の類同性の影響を調べるために次のような実験を行った。被験者から57cm前方に置かれたコンピュータ画面に、Fig.6上図に示すように、注視点（+印）を中心にして左下と右下に大きさ・色・輝度・形が異なったS1、S2の2個の対象を150ms提示し、150msの暗黒の間隔（ISI）を置いて、今度はFig.6下図のように右上と左下にS1、S2を150ms提示する。この2画面を反復提示する。このような条件下では、S1同士、S2同士の間の水平運動とS1・S2間の垂直運動が生じ得る。多義的な仮現運動事態である。その際上下的間隔は視角2度（2cm）に一定しているが、左右の間隔は、被験者の反応によって変化する。被験者はこのような画面の交代を10周期、+印に注目しながら観察続ける。10周期ごとに、水平・垂直どちらの運動が優勢であったかによって、被験者はコンピュータに運動したジョイスティックを傾けたり横に倒したりする。被験者の反応に応じて、次の提示の際の対象間の水平間隔が自動的に変えられる。縦反応のときは水平間隔を視角15秒（2.5mm）四捨し、横反応のときは同じだけ伸張する。つまり両対象間の類同性が近接性より強くはたらく同一対象間の水平運動が優勢なときは、水平間隔を広げて水平運動を起こりにくくする。それに対し、近接の要因が強く働き異種対象間
大山：シェルタート諸要因の量的測定と知覚情報処理

の垂直運動が優勢なときは、水平間隔を収縮して同一対
象間の水平運動を生じやすくした。このようにすれば、
緩反応、急反応が出現する率は均衡するはずである、こ
のような均衡が生じ、両反応が50％ずつとなる水平間
隔を二重上下法で測定した。ただし仮想運動には、一度
ある方向に起こり始めると、間隔距離を変えても、なか
なく運動方向を変えない履歴効果傾向、すなわちシェ
ルタート要因の一つである客観的構えの要因の効果が認め
られている（Wertheimer, 1912; Metzger, 1953; 萩見,
1969）。そこで、10 周期の仮想運動の観察がすむとこ
に、妨害刺激として、並んだ 2 個の赤い小円を水平・垂直
方向に並行的にそれぞれ3回ずつ運動させる試行を挿
入した。この運動は多義的でなく、誰にでも水平・垂直
に見えるので、運動の履歴効果を減少させるのに役に立
つと考えられるのである。

S1, S2 の刺激対象としては、前述の群化の実験で述べ
たと全く同じ組み合わせが用いられた（実験も群化実
験と同じ被験者同士比喩にかかわって）。赤い、中位、
中位の大きさの円が基準の刺激とされ、色は赤・緑・青
の 3 種、輝度は高輝度の 3 段階、大中小の 3 段階、形は
等面積の円・正三角形・正三角形の 3 種であった。実験の
第 1 部では、色・輝度・大きさ・形のうちの 1 つの属
性だけが変えられた、その結果では、刺激対象間の輝度や
大きさの差が大きいほど、水平運動と垂直運動の生起率
が均衡する水平間隔が大となった。例えば大きなショー
リズムでは、大中、中小の組み合わせよりも大小の組み合わ
せで、均衡間隔（水平間隔）が大となった。また群化シ
リーズでは、高輝度、中位の組み合わせよりも高輝度の組
み合わせの方が、均衡間隔が大となった。つまり大小、
高低など類似性が多いほど、それに均衡する間隔
距離が大となった（同じ間隔間で類似性が高い刺激対象
間ほど仮想運動が生じやすいことを示している）、また
色シリーでは、赤・青間が青・緑間や赤・緑間よりも
類似性が低く、形シリーでは円・正三角形間が円・正
方形、正方形・正三角形間より類似性が低いことが示さ
れた。これらは群化の結果とよく対応する結果であり、
群化と仮想運動実験間で互いに対応する刺激対象の組み
合わせで得られた測定値（均衡間隔）の相関係数は
0.71〜0.94 の大きい値を示した。類似の要因が両現象
に共通する効果を与えていることを示した。ただし、刺激
の差異の增大に伴う均衡距離の增大の勾配は群化の場合
よりも緩やかであり、直径または輝度の 1/7 乗に比例す
る程度である。

実験の第 2 部では、空間・時間条件は第 1 部と同じと
し、刺激対象（S1, S2）には、群化実験と同様に、
色・輝度・大きさ・形の差を重視させた刺激を用いた。
その結果では、多くの属性に関して異なる刺激対象の組
み合わせほど、均衡する水平間隔が明確に大となった。
この結果も群化実験の結果と対比した。群化実験との相
関は 0.88 と高かった。ただし均衡間隔の増加は群化の
場合に比べて緩やかであった。群化の場合と同様に、
色・輝度・大きさ・形の 4 属性における差異が算出的に
働き、類似性を下げる、差異を持つ対象間の（垂直方向
の仮想運動の生起を妨害）することを示している。なお
この第 2 部の結果は提示時間と ISI の両方を 100 ms,
80 ms と短縮した場合でも再確認された。

最小変化の法則と仮想運動

Oyama, Naito & Naito (1994) は Figure 7 のよう
に、色（C）、形（SH）、大きさ（S）が異なる 2 つの対
象（AB）をコンピュータ画面中の左右の位置（間隔：
視覚 5.4 度または 10.8 度）に同時に 150 ms の間提示し,
150 ms の間隔（ISI）を置いて、AB の位置を交換して
再び 150 ms 提示するように 20 s 繰り返し,
その間にどのような見え方が、どれだけの時間出現
するかを、被験者のキー押しき反応によって測定した。そ
の際、A 対象はつねに赤小円として、B 対象は色
（赤・緑・形・円・正方形）・大きさ（大小）のいずれ
かが異なる C, S, SH 条件だけなく、それらの差異
の組み合わせ条件である C+SH（緑小正方形）、C+S
（赤大円）、SH+S（赤大正方形）、C+SH+S（緑大正
方形）の計 7 条件についても実験した。

その際生じる見え方としては、(1) 出現 - 消失（2
箇所で、AB または BA 対象が交代で出現と消失を続け
る、継続時相に相当する）、(2) 機動感（A と B の 2 対
象が交差的に仮想運動をする）、(3) 奥行き感（左右の

![Figure 7. Crossed apparent motion and other perceptual changes (Oyama, Naito & Naito, 1994)](image-url)
2対象が拡大縮小しながら交互に前進後退運動する)，
(4) 属性変化（左右の2箇所で、2対象が別々にAから
Bへ、BからAへと変色・変形・拡大縮小などする，
位置の移動はない），さらに提示時間と間隔時間が短い
場合は、このほかに(5) 重複（左右の2箇所にAB2対象
が重なった映像が見える）の見え方も生じる，被験者
は、上記の7条件をランダム順に2回づつ，対象の中央
を注視しながら観察して，上記のそれぞれの見え方が続
く間，該当のキーを指で押しつづける，それぞれのキー
を押した合計時間の比率を求め，測定値とした。

この結果，横運動（交差仮現運動）以外の見え方をし
ばしば生じた，C，SH条件では，出現一消失や属性変
化の見え方がかなり生じ，S条件では，オブジェクト方
法が生じやすかった，横運動を，それらの単一差異条件
も若千生じたが，C+S，C+SH，SH+S，C+SH+Sの
複合差異条件で優勢であった。複合差異条件では，属性
変化の見え方が減少した，また一般にAB2対象の間隔
が広い場合に横運動がやや生じにくく，属性変化の見え
方が生じやすかった，

複合差異条件では，位置を変えずに左右の位置でそれ
ぞれの対象が，色や形や大きさのうちの2から3属性を
同時に変化したと見えることは，知覚的変化が大きい，そ
れに対しAB2対象が色・形・大きさなどの知覚属性を
変えずに，運動して位置を交換したと見た方が，知覚的
変化が少ない，そのように運動したと見た方が知覚的変
化が少なくなるときに，横運動が現れやすいことを，こ
の実験結果は示唆している，すなわち，横運動（交差的
仮現運動）は，当該刺激変化条件下で生じるう見方の
1つに過ぎず，他の可能な見え方より横運動の方が知覚
的変化が相対的に少なくてすむときに生じると考えられ
る，対象間間隔が比較的小さく短いときに横運動が多くなる
ことも，位置の移動をも知覚的変化の1種と考えれば，
当然といえる，この意味で，仮現運動（横運動）は知覚
安定性の1つの現れといえる（Oyama, 1997），これは
最小変化の法則に従ている（Koffka, 1935; Metzger, 1954）。

このような考え方は，Figure 7のような，交差仮現
運動に限らず，一般的仮現運動（ベクトル運動）にも敷衍
して考えることが可能である，刺激条件に忠実に2つ
の対象の出現一消失を見より，1つの対象の移動運動
として見た方が，知覚が安定する場合に仮現運動が生じ
るといえる。

このような最小変化の観点からテルヌス効果を考え
ことも可能であろう，かつてTernus（1926）はFig-
ure 8に黒丸で示した数値の光点を第1刺激として提示
し，白丸で示した群数個の光点を第2刺激として提示し
た，第1・第2刺激に共通に示された光点（2重丸）は
それらだけで提示すれば単なる点滅に過ぎず，動かない
はずなのに，他の点と同時に提示すると，全体の形態を
保つように，それらも左右に動いて知覚されることが見
出された，ゲシュタルト心理学の立場から，現象の同一
性の問題として論じられた（Koffka, 1935：大山，
2000），現在もテルヌス運動（Ternus motion）などと
して注目されている（Scoito-Samuel & Hess, 2001;
Watanabe, 1998），このテルヌス運動の場合は，全体の
パターンが形を変化せずに平行移動したと見られた，1
部分が大きく動き，全体のパターンが変化して見えるよ
リは，知覚的変化が少なく，安定した知覚が得られるの
であろう。

注意の範囲と群化

ランダムな配置で複数の点を瞬間的に提示した
際に，何個までなら正確にその個数を把握できるかの問
題は「注意の範囲」（span of attention）として古くか
ら知られている（大山，2000）。その際，黒点を少数の
グループに分けて提示したという．Oyama（1986）はFigure 9 B，Cのように単純なパターンをも
つ4または5のグループに分かれる黒点からなる刺激パ-
ターンを作成して，Figure 9 Aのようにグループに分
かれにくい対照刺激パターンとともに，ランダム順にそ
れぞれ20msずつタキストスコープで提示した，その

Figure 8. Ternus motion（Ternus, 1926）
結果得られた注意の範囲（50%正確に回答できる個数）は、Aシリーズでは9.3であったが、Bシリーズでは13.5、Cシリーズでは14.2と上昇した。その際B・CシリーズではAシリーズに比べて反応時間が短縮していことが判明した。

なおグループに分かれるパターンであっても、それぞれのグループが単純なパターンにならない場合はこのような注意の範囲の増加が認められなかった。これらの結果は刺激パターンが単純な形をもつグループに分かれることによって、個数の把握の情報処理が能率化していることが示唆された。Miller（1956）のいうチェンキング（chunking）の過程が生じていることが推定される。

知覚情報処理とデジタル化の諸要因

従来、教科書中に図示とともに定性的説明が列挙されるにとどまる場合の多かったデジタル化諸要因を、量的に測定して、諸要因間の効果の比較を可能にできることが、上述の諸実験によって明らかになった。特に類同の要因は、近接の要因と競合させ、両要因間の均衡する条件を求めて、その際の空間間隔（均衡間隔）が類同性の量的指標として用いられた。それにより色・明るさ・大きさ・形などのさまざまな知覚属性での類同性が、均衡間隔という共通の尺度の上で比較することが可能になった。その結果、例えば、赤と緑の色の差異、1:2.7の輝度の差異、1:2の大きさ（直径）の差異、円と三角形の形の差異などが互いに機能的にほぼ等価であることが示された。大きさや輝度のように量的に変化可能な刺激次元に関しては、それらの刺激値と均衡間隔の間にべき関数的関係が認められた。

筆者等の群化・仮想運動・透明視などの研究では、明るさ・色・大きさ・形などの異なる属性間で類同性の効果が共通に認められ、さらにそれらの属性間の類同性に関して加算性が認められた。またそれらの類同性は近接性と協力的あるいは競合的に作用することが明らかにされた。すでに高木（1940）の研究によって、群化における近接の要因は三次元視空間中の近接性であることが確かめられている。それらの色・形・奥行きなどの知覚属性（特徴）は、大脳における知覚情報処理過程において、異なったチャンネルにより処理されていると考えられている（Hubel & Livingstone, 1987：行場、2001；Livingstone & Huble, 1987；田中、1999）。これらの点から、近接の要因や類同の要因が機能する水準は、それらの個別の知覚属性（特徴）の処理過程よりも高次の水準であると推定される。しかし知覚における過去経験の要因の効果は他のデジタル化諸要因に比較して弱いものであることが、Gottshaldt（1926）などの研究で知られている。したがってデジタル化諸要因が機能する水準は、学習や記憶が重く水準には達しないことになる。

他方、同心円錯視のように類同性の効果が認められない知覚現象もある（Oyama, 1962：大山、2000）。類同の要因が働く情報処理水準は同心円錯視が生じる水準より高次なものと考えられる。

知覚的群化において、時間的近接性は空間的近接性と同様に機能し、仮想運動においては経時的に提示される対象間の類同性が重要であることが示された。またFigure 5に示すような運動対象間の群化において共通運動の要因は極めて強力であることが示された。共通運動の要因は時間的に広がった運動過程の類同性によって成立するものであるから、これらの要因は、短期記憶過程と関連することが推定される。

デジタル化諸要因がすべて同一の水準で作用することは限らないが、それらの要因の多くは個別の知覚属性の処理過程よりは高次で、短期記憶は関係するが、長期記憶や学習はほとんど参加しない水準で、機能していると推定される。

Figures 6, 7のように、多義的な刺激事象で仮想運動がある方向に生じるのは、その運動が、同じ刺激条件下で生じるような衝突のうちに最も知覚的な変化が少ない場合であると考ええる。例えばFigure 6のように、水平と垂直の仮想運動が生じる可能性がある多義的な事象では、垂直・水平それぞれの運動が生じる場合の位置の変化（運動距離）の大き（近接の要因）と運動に伴う色・形・明るさ・大きさの変化量（類同の要因）の合計がより少ない方向に運動が生じると理解することができる。Figure 6では、水平運動が生じれば、運動距離は長いが、色などの変化量はなくてよい。他方、垂直運動が生じると、運動距離が短い方が変化が必要になる。そこで運動を位置という1種の知覚属性の変化と捉えならば、位置をふくめた属性全体の変化量の合計の小さい方向に運動が生じると解釈することができよう。これも最小変化の法則に従っている。
また、Figure 7のように、出現・消失、特性変化、奥行き運動などさまざまな見え方が生じうる刺激事態で、横運動（交差的仮想運動）が生じるのは、AB 対象がそれぞれの位置で出現した場合に、より強く、より大きな方向を変える前に、両対象が交差運動を左右位置を交換した場合が見られる。知覚的変化が少ない場合であると考えられる。すなわち、従来の要因が近接の要因に強力である場合である。それに対して位置の移動を伴わない特性変化の見え方が生じるのは、近接の要因が強力に働く場合が言える。従来（特性）と近接（位置）の両要因の変化を含めた最小変化の法則に従ったのである。

Figure 8に示したテキスト運動の場合は、一部の点だけが大きく動いたとき、全体が平行的に動いたとき見られ、全体のパターンが一定に保たれる知覚的変化は考えられない。

これらの例はすべて、最小変化の法則に従っているといえる。しかし、可能な各種の見え方が重なる場合、と近接の要因が最小の知覚的変化であると決定するために、知覚的変化量を量的に比較できなければならず、つまり、色の変化・明るさの変化・形の変化・大きさの変化・位置の変化（運動）と、また、視覚的特性の変化を量的に比較すること、さらにそれぞれの知覚的変化が重なる場合の加算の方法を定めなければ、どの変化が最小の変化とは決まらない。本論文の総合した筆者等の実験的な研究は、そのような異なった特性間の知覚的変化の量的比較を、経験的に行う道を開いたものといえる。なお時間的変化過程である横運動における同一順位の要因は同時的順列において働いていることから、最小変化の法則は、時間の変化に限らず、同時的空間の変化についても適用されると考えられる。

Figure 9に示したような注意の範囲に対する知覚的群化の効果は、1種のランキングの効果と考えられる。しかし、効果は各グループが単純なパターンになる場合に限られているものである。まcontrastには練習効果が認められるから、これまで述べてきた知覚現象は高次の水準のものか知れない。

これらのシュガタール要因は生物的進化あるいは個体の初期学習の結果によって適応的に機能しているものと考えられる。さらに知覚的情報処理の能率化に役立っているものと推定される。例えば、Figure 5で示した対称性の要因や、よく知られたような連続的要因、より強い要因などは、知覚対象の棲地性による情報の冗長性に基づくもので、観察し知覚的変化の量の軽減に役立っているであろう。類同の要因も、完全に同一と見なし合う対象間であれば、冗長な情報の抽出過程と見なせる。最小変化的法則は、処理情報量を最小にする過程の結果を見ることができる。

しかし完全に同一ではない。類似した対象間の群化のようない場合には、知覚群化によって共通部分を抽出し、個々の対象のそれが情報、他の対象と共通部分と個別部分に分離して処理している過程を見ることもできる。例えば、さまざまな色の対象が見られた場合、まず赤系の色の対象群と、青系の色の対象群として群化し、それぞれのグループの共通した情報とそれぞれのグルーブ内での個々の対象の微妙な色の差異の情報とを分け、2段階に知覚的処理しているとも考えられる。また近接の要因で群化した場合も、近接したものを同様でグループを作り、その中心的な空間位置に関する情報と、各グループ内の個別対象の相対的位置情報を分離して情報処理しているとも考えられる。これらの過程は、Johansson（1973, 1975）が指摘しているよう、複数の運動対象の運動を共通運動と部分運動に分けて知覚する過程に似ている（大山, 2000; Oyama & Tsuchiya, 1989）。このようなにシュガタール諸要因によって、知覚情報が共通情報と部分情報に分離されて、知覚情報処理が能率化される過程については、今後の情報論的、神経生理学的解明が待たれる。

引文文献

行場泰朗 2001 感覚・知覚心理学. 神経生理学的理論 中島義明編 心理学理論事典 朝倉書店 235-262.

Livingstone, M.S. & Hubel, D.H. 1987 Psycho-
physical evidence for separate channels for the perception of form, color, movement and depth.
Journal of Neuroscience, 7, 3416-3468.

Miller, G. A. 1956 The magical number seven plus or minus two: Some limits on our capacity for processing information. *Psychological Review, 63*, 81-97.

大山：ゲシュタルト諸要因の量的測定と知覚情報処理