美の配置を規定する基本的要因: 枠と円板の相対的大きさ

日本の心理学会 第21巻 第2号

黄緑以外では、暖色ほど進出色、寒色ほど後退色としている点では、一般の視覚差異者の傾向と大差はない。ただし、KTは白を寒色で進後色としているが、暗者者TTは暖色で進出色と見なしている。色の表現性: KT、MOがともに季節名と対応づけたので、日を「冬らしい」と「秋らしい」配色のみであった。色の美しさ、好み: KTとMOは対照的な傾向を示した。KTは、黄、赤、橙などの暖色系と青の順位が高く対比色を、MOは「美しさ」、「好み」で、青、紫、黒、白、緑などの寒色系と無彩色の順位が高く、同一、類似色を好む、美的表象の誘導と創作: KTは風景写真の空の青に美しさを感じとることができる、MOは、触覚的素材をも採用した絵画や押し花の創作を通じ、事物や心象風景を表現している。

初期視覚における主観的輪郭の表現

日本大学 吉野 大輔・野口 薫

本研究では主観的輪郭の時間的、空間的特性側面を捉えることにより、境界線としての主観的輪郭や層級現象による面の生起などについて検討することを目的として、実験3では主観的輪郭の形態が境界線としての主観的輪郭や面の生起に影響を与えるかについて検討した。実験4では主観的輪郭がどこにあるかということを特定する位置同定と、主観的輪郭の形態を判断する弁別課題に要する反応時間の比較を行い、主観的輪郭の処理と形の処理の関係について検討を行った。実験の結果、条件1の主観的輪郭を知覚してそれがどこにあるかということも判断するのに必要な時間が、条件2の主観的輪郭の全体的な形態を知覚して判断するのに必要な時間よりも早いことが示された。これは主観的輪郭がどのような形か判断できない段階ですですに主観的輪郭を特徴づけている現象が生起していることを意味している。主観的輪郭の処理が、その全体的な形に影響されないという知見は、主観的輪郭が視覚系において形よりも前の段階で処理されていることを示唆するものである。

乳児期における主観的輪郭の知覚特性

中央大学 大塚 由美子・山口 真美

3-8歳児のKanizsa型主観的輪郭（IC）の知覚特性について選好注視法を用いて検討した。IC型は乳児の自発的選好を引き起こす特性をもつ、IC型と同要素反転図形では乳児はIC型に選好注視反応を示すことが明らかにされている（Otsuka et al., 2002）。本研究では、乳児の選好注視反応がICの知覚強度によって変化するかを検討した。成人ではIC型に占める誘導要素の比率が増大すると、ICの補間強度が増すと報告されている（Shapley & Kellman, 1992）。誘導要素が小さい条件では、7-8ヶ月児の選好に有意傾向が示されただけであったが、要素を大きくすると、5-6ヶ月、7-8ヶ月児に有意な選好が示され、3-4ヶ月児の選好は有意傾向が示された。さらにICの印象が弱まると予測される外郭形を用いると有意な選好は見られなくなった。これらの結果は、乳児の選好は主観的輪郭の知覚を反映したものであることを示す。

盛栄の偏位の矛盾と低空間周波数フィルター仮説との関連

日本大学・長寿科学振興財団 和田 有史

Muller-Lyer（M-L）図形は外向図形に挟まれた主線が内向図形に挟まれた主線よりも過大評価される。しかし盛栄（1954）はM-L図形の矢羽のみを縦方向に配置した場合は矢羽の頂点の位置がM-L図形の逆の方向に知覚される盛栄錯視を見出し、偏位の矛盾を指摘した。本研究は知覚方略と低空間周波数成分が偏位の矛盾に与える影響を検討した。低空間周波数フィルターをかけるとM-L図形の矢羽が両撮視の方向に像が膨ざするため、偏位の矛盾を説明できる可能性がある。実験では空間周波数関数の手続き後に、2の知覚方略（矢羽間の距離・矢羽の頂点の位置）による調整を行った。その結
明るさの同化・対比における個人差について

日本大学 高島 翠・野口 薫

明るさの同化・対比においては、図形を全体的に捉えると同化方向に、部分的に捉えると対比方向に変化することが知られている。本研究は、各観察者の持つ見方と、教示による見方の変動（含む）を含めて、明るさの同化・対比における個人差に注目した。無教示の状態での反応が「全体教示」「部分教示」のどちらに近いかを尋ね、「部分群」「全体群」の2つに分けた。どちらの群においても「全体教示」ではより同化方向に、「部分教示」ではより対比方向に変動し、「全体群」のほうが「部分群」よりも同化方向に変動していた。図形の捉え方、教示によってある程度操作できるものの、個人の持つ見方を重視される。図形に関しては、刺激要因だけではなく、その刺激要因がどのように最適な形態としてまとめられるかというフレクタンツ構造の重要性があげられている（野口, 2000）。同時に、個人がどのように図形をみようとするのか、という観察者の持つ体験モードの重要性が示唆される。

持続時間の異なる（5 - 80 msec）エネルギー総量は一定（1035 td×msecの閾上限形視刺激群（直径6.42 deg）に対するマスキング関数を調整法により求めた（ブローブは0.86 deg, 1 msecで中心視）。マスキング関数が5 msecの刺激に対するものと等しくなる長さの持続時間を完全な時間的加重が生じる限界点と考えると、その値（20 msec）は刺激の弁別率を指標とした場合のそれと一致した。また順応野強度が同じ場合（248 td），時間的加重の限界点は刺激の極性からほぼ独立であった。この結果、視覚系の時間的加重には比較的平坦のレベルでの応答が大きく寄与し、またその特性はオン経路とオフ経路とで殆ど等しいことを示すものと思われる。

3次元物体における運動の予期：追従眼球運動の効果

九州大学 河邊 隆寛・三浦 佳世

仮想運動する対象の位置を予測する場合、正確な位置よりも手前を予測位置として選択する傾向がある。しかしながら、先行研究においては眼球運動の効果が統制されてこなかった。そこで本研究では、3次元物体図形を用い、追従眼球運動を行った際に仮想運動についての予測が生じるかを検討した。その結果、追従眼球運動条件では、従来の結果と異なり正確な位置通り過ぎた位置が予測された。とりわけキャストシュート条件が付加されている刺激において追従眼球運動を行った場合、比較的正確な位置が予測位置として選択された。この結果、仮想運動における予測の歪みは追従眼球運動の有無によって変化し、キャストシュートは追従眼球運動を行う場合のみ有効になることが示唆された。

充填された刺激による仮想運動

大阪府立大学 木村 英司

本研究では、Ramachandran & Gregory (1991)によるダイナミック・ノイズの充填を利用し、充填され見えなくなった刺激と別の刺激との間の知覚される仮想運動について検討した。用いた刺激を通り、ダイナミック・ノイズ上に左右2つの刺激を提示→充填により両刺激とも見えなくなる→一方を実際に消す→中央部に新たな刺激を提示、このような刺激を観察すると、新