Finite-element Stress Response Analysis of Adhesive Scarf Joints of Dissimilar Adherends Subjected to Impact Tensile Loads*

by SHIMURA Jyo** and HIRASHIMA Ken-ichi**

The stress behavior in adhesive scarf joints of dissimilar adherends subjected to tensile impact loads are analyzed in an elastic region using three-dimensional finite element method (FEM). FEM code employed is DYNA3D. An impact load is applied to a joint by dropping a weight. The end of the upper adherend is fixed and the other end of the lower adherend is subjected to an impact load. The effects of scarf angles and combination types of the adherends, the adhesive thickness and Young’s modulus of the adhesive on the stress behavior at the interfaces are examined. It is found that the maximum value of the maximum principal stress \(\sigma \) appears at the interface between the adhesive layer and the lower adherend, and it is independent of the combination types of the adherends. In the cases of scarf angles of 52.47, 60 and 75 degrees among the seven cases, the maximum principal stress \(\sigma \) and each stress distributions at the interfaces become to be more homogenous. The value of the maximum principal stress \(\sigma \) decreases as Young’s modulus of the adhesive decreases and the adhesive thickness increases. In addition, experiments are carried out to measure the strain response of the adhesive scarf joints subjected to impact tensile loads using strain gauges. A good agreement is seen between the tendencies of the analytical and experimental results.

Key Words: Stress Response Analysis, Finite Element Method, Adhesive Scarf Joints, Dissimilar Adherends, Impact Tensile Loads

** 論文要旨

衝撃引張り荷重を受ける接着剤の異種材料を用いたスカーフ接着の応力伝播特性を考察する要旨の検討と有限要素法を用いた応力応答解析を検討する。実験においては、様々な接着剤の種類、接着層厚、各材料の種類、荷重の載荷条件を変化させ、衝撃荷重を受けるスカーフ接着の応力応答特性を解析的に評価する。その結果、(1) 荷重層の材質の組合せによらず、最大応力は最大応力の値は下部接着層と接着層との間に発生する。(2) 7 種類に変化させたスカーフ角のうちの 52.47°, 60°および 75°で最大応力の分布は変化が小さくなる。 (3) 各応力成分の分布状況を比較すると、スカーフ角が 52.47°, 60°および 75°の間でより均一になる傾向がある。 (4) 接着層の厚さを大きく、接着剤の収弹性係数を小さくすると最大応力の値が大きくなる。(5) 接着層付近のひずみ応答に関する実験を行い、実験結果と解析結果の傾向はよく一致した。

1. 緒 言

スカーフ接着剤に関する研究は Luhkin, Wah, 永弘らが静的引張り荷重を受けるスカーフ接着剤内部の応力状態を解析的手法で示している。永弘は静的引張り荷重下のスカーフ接着剤において三次元有限要素解析を行い、光弾性実験結果および二次元解析結果と比較している。これらの研究により、静的荷重を受けるスカーフ接着剤の応力分布は明らかにされつつある一方、最近の機械構造物における軽量化の要求および構造用接着剤の進歩により、航空機のみならず自動車および鉄道車両などへの接着剤の利用が拡大し、接着体の厚さや材質の異なる接着剤の利用も増加している。それに伴い、接着体が異種材料異寸法の接着層に関する研究もいくつかなされている。しかし、従来の接着剤の研究は静的荷重下の研究が中心で、衝撃荷重下の研究はいくつかの研究が除いてあまりなされていない、接着剤の用
解析方法

Fig. 1 は有限要素解析に用いたスカーフ接着続の解析モデルを示す。Fig. 1 に示すように座標軸は荷重の作用する方向を X 軸とする xyz 直角座標およびスカーフ角を θ だけ回転させた接着界面に垂直な方向を n 軸とする sns 直角座標とし、原点を O とする。接着体の中心部の長さを L、幅を 2W および厚さを 2t とする。接着層の n 軸方向の厚さを L とする。接着体のスカーフ角を θ とした。下部および上部接着体の接着面の縦断弾性係数、ポアソン比、密度をそれぞれ E1、ν1、ρ1 および E2、ν2、ρ2 とする。接着層の厚さを L とする。境界条件はスカーフ接着体のモデル化に限界条件および初期条件を満たす条件を確保している。下部接着体の穴にピンを定着し、これに接着剤を有するガイド棒を定着し、高さ H により重量を受ける形に自由落下させる。衝突速度を V（=√2gLH）とし、これも初期条件とし、計算においては接着体および接着層の降伏応力に達しない程度の衝突引張り荷重（静的衝突）を作用させる。

Fig. 2 は有限要素解析における要素分割例を示す。要素分割に 6 面体要素を用い、三次元弾性解析を行う。要素数および節点数それぞれ1772および3092とし、解析コードは DYNA3D™ と FD! を使用した。DYNA3Dの解析の領域は以下の通りである。すなわち、運動方程式は慣性仕事の原理を用い、M[A]+K[U]=F により表している。[M] は質量マトリックス、[A] は加速度ベクトル、[K] は剛性マトリックス、[U] は変位ベクトルおよび [F] は外力ベクトルを表す。これに初期条件、境界条件および接触条件を与えることにより計算を行う。通常、初期条件として時間 h = 0 の時の変位 u(x, y, z) を与える。u は変位、x は長手の座標値。u は初期変位および t
は時間を表す、DYNAS3Dにおいて、初期条件は衝突速度du (x,t)/dt = v_{i} として与えている。さらに、時間積分は中心差分法^{12}を用いている。

なお、本解析の実験では後着ろ接部 (s = ±l, n = ±u_{i}/2)近傍で特異的な応力の発生が確認されるので、その部分の要素を細かく分割している。接着部は軸方向の最小分割寸法を0.05 mmとした。また、応力の計算結果は筒点の応力値である^{10,13}。ただし、表面直には界面方向の応力が不連続となるので、本論文で示した表面直における応力結果は全て接着部の要素で得られた応力からの外挿値を用いている。

Table 1 は解析に用いた被着体および接着剤の材料定数を示す。被着体の材質はアルミニウム合金 A6063 および
軽鋼 SS400。接着剤はエポキシ系構造用接着剤 (住友 SM
製 Scotch-Weld 1838) を想定した。これらの材料定数はダ
ンベル型試験片を作成し、材料試験機を用いた引張り試験
によって求めた。

3. 実験方法

解析結果を確かめるため、接着界面近傍における被着体
のひずみ応答に関する実験を行う。Fig. 3 はひずみ応答に
関する実験に用いた試験片の形状、寸法および材質を示す。
被着体の材質にはアルミニウム合金 A6063 および軽鋼
SS400 を用い、Table 2 に示す Type A および Type B
の 2 種類の試験片について実験を行った。接着方法は被着
体の接着面を研磨紙で研磨後、脱脂洗浄し、エポキシ系構
造用接着剤 (住友 SM 製 Scotch-Weld 1838) を塗布し接着
した。これを一昼夜放置した後、65℃で 2 時間キュアリ
ングを行った。接着層は 0.1 mm とした。

Fig. 4 は実験装置の概略およびひずみゲージ貼り付け位置
を示す。ひずみゲージは上部被着体間 (n = 2.0 mm, y =
11.75 mm), (n = 2.0 mm, y = 11.75 mm) および下部被着
体間 (n = 2.0 mm, y = 11.75 mm), (n = 2.0 mm, y =
11.75 mm) の 4 節所の位置に貼り、重錘 (0.93 kg) を高さ
H = 30 mm より自由落下させた。なお、この重錘による
衝撃引張り荷重は被着体および接着剤の降伏応力に達しな
い程度の大きさである。x 軸方向のひずみ ε_{x} の時間変動を
ひずみゲージ (共和電業製 KFG-1N-120-C11, グリッド
長さ 1.0 mm, ベース長さ 4.2 mm, 幅 1.5 mm) により検出
し、動ひずみ計 (共和電業製 DMP-602; 周波数応答 5
kHz) を通じ、アナライジングレコーダ (横河電機製
AR1100A) により記録させた。
4. 解析結果

4.1 接着界面の応力伝播および応力分布

解析において、実験結果との比較のため解析で使用した接着の寸法および材料定数は実験で用いたものと同様とし、接着層のn軸方向の厚さをtn=0.1 mmとした。重鉄は高さH=30 mmから自由落下させるためFig.1に示す重錘の衝突速度v=766.8 mm/sを設定し、衝撃エネルギー0.27 Jを与えた計算結果を示す。接着体の材質の組み合わせType A (Table 2参照)、スカーフ角θ=45°のスカーフ接着板の接着界面における最大主応力σ1の時間変化を3000 μsまで計算し、各時間と各要素の応力状態を調べた結果、荷重作用後1000 μs程度の計算時間で最大主応力σ1の最大値が現れ、これ以降、最大主応力σ1の値は時間の経過とともに減少していく。したがって、本形状の解析モデルにおいては1000 μsまでの計算時間で最大主応力σ1の最大値が求められると推測される。また、接着界面のz=t (接着表面)および接着層中央 (n=0, z=+t (=3.0), s/l=0.83 (s=14.68))における最大主応力σ1の時間変化を示し、横軸は最大主応力σ1 (MPa)、縦軸は衝撃荷重作用してからの時間t (μs)を表す。

Fig.6は同様のスカーフ接着板の接着界面および接着層中央における最大主応力σ1の分布を示す。それぞれの応力分布はFig.5において最大主応力σ1の伝播が最大値

Fig.5 Stress wave propagations at the interfaces (n=±0.05, z=3) and the middle plane (n=0, z=3) in the adhesive. (θ=45°, Type A (E1=69.7GPa, E2=206GPa), E1=3.33GPa, t1=0.1 mm, l=188 mm, 2w=25 mm, 2t=6 mm, v=766.8 mm/s)

Fig.6 Stress distributions at the interfaces (n=±0.05, z=3) and the middle plane (n=0, z=3) in the adhesive. (θ=45°, Type A (E1=69.7GPa, E2=206GPa), E1=3.33GPa, t1=0.1 mm, l=188 mm, 2w=25 mm, 2t=6 mm, v=766.8 mm/s)

Fig.7 Distributions of each stress component at the interface (n=±0.05, z=3). (θ=45°, Type A (E1=69.7GPa, E2=206GPa), E1=3.33GPa, t1=0.1 mm, l=188 mm, 2w=25 mm, 2t=6 mm, v=766.8 mm/s)
示した時間が$t = 350\mu s$のものである。繊維は最大主応力\(\sigma_1\)（MPa）、横繊維は接合界面に沿った原点からの距離sを接着界面のs軸方向の長さlで無次元化した値s/lを示す。Fig. 5およびFig. 6により、本研究で用いたスカーフ接着接合で衝撃引張り荷重を作用する場合、最大主応力\(\sigma_l\)の最大値は衝撃荷重を直接受ける下部接着体と接着層との界面（\(n = -0.05, z = 3.0\)、\(s/l = 0.83\)付近）に発生することがわかる。

Fig. 7は同様のスカーフ接着接合において、衝撃荷重作用後の時間$t = 350\mu s$の接着界面（\(n = -0.05, z = 3.0\)）における各応力成分の分布を示す。縦軸は各応力成分の応力値（MPa）、横軸はs/lを示す。これから、荷重方向の応力成分\(\sigma_l\)が最も支配的であり、次いで\(\sigma_2\)および\(\sigma_3\)はほぼ同じ程度の大きさであることがわかる。

4.2 スカーフ角が接着界面の応力分布に及ぼす影響

Fig. 8はType Aのスカーフ接着接合のスカーフ角\(\theta\)を変化させた場合の下部接着界面（\(n = -0.05, z = 3.0\)）における最大主応力\(\sigma_l\)の応力分布を示す。縦軸は最大主応力\(\sigma_l\)、横軸はs/lを示す。各スカーフ角の分布は下部接着界面（\(n = -0.05, z = 3.0\)）における最大主応力\(\sigma_l\)の伝播が最大となった時間（15、400、60、400、450、500μs、52.47、400μs、60、350μs、75、400μs、95、450μs）のものである。接着体の中心部（\(y = 0\)）の長さ\(l_1 = 188\)mm、接着層の幅\(2w = 25\)mm、接着体の厚さ\(2t = 6\)mm、上部および下部接着体の繊維性係数\(E_1 = 69.7\)GPaおよび\(E_2 = 206\)GPa、接着層のn軸方向の厚さ\(t_n = 0.1\)mmおよび接着層の繊維性係数\(E_1 = 3.33\)GPa

\[
\theta = 45°
\]

\[
E_1 = 6.67\text{GPa}
\]

\[
E_2 = 3.33\text{GPa}
\]

\[
\sigma_1 = 20\text{MPa}
\]

Fig. 8 Effects of scarf angle θ on the maximum principal stress distributions at the interface (n = -0.05, z = 3).

\(\theta = 45°\), Type A (\(E_1 = 69.7\)GPa, \(E_2 = 206\)GPa), \(t_n = 0.1\)mm, \(l_1 = 188\)mm, \(2w = 25\)mm, \(2t = 6\)mm

Fig. 9 Effects of Young's modulus E1 of the adhesive on the maximum principal stress distributions at the interface (n = -0.05, z = 3).

\(\theta = 45°\), Type A (\(E_1 = 69.7\)GPa, \(E_2 = 206\)GPa), \(t_n = 0.1\)mm, \(l_1 = 188\)mm, \(2w = 25\)mm, \(2t = 6\)mm, \(v = 766.8\)mm/s
心部 (y=0) の長さ l_1 (=188 mm), 被着体の幅 2w (=25 mm), 被着体の厚さ 2t (=6 mm), 接着層の n 軸方向の厚さ t_n (=0.1 mm), 上部および下部被着体の縫弹性係数 ε_1 (=69.7 GPa) および ε_2 (=206 GPa), スカラー角 0 (=45°) および相対速度 v (=766.8 mm/s) は一定とし, 接着層の縫弹性係数を ε_1 = 1.67, 3.33 および 6.67 (GPa) の 3 倍類を想定した.

本研究で扱った寸法および形状のスカラー接着二者が著しく大きいが, 最大主応力 σ_v の最大値が大きくなることがわかる, これは接着層内を伝播する応力波の速度の変化が原因していると考えられる.

4.4 接着層厚さの接着界面の応力分布に及ぼす影響

Fig. 10 は Type A のスカラー接着二者の接着層厚さ t_n が下部接着界面 (n = ±0.05, z = ±3.0) の最大主応力 σ_v の応力分布に及ぼす影響を示す. 縫軸および縫軸は Fig. 8 と同様である. それぞれの分布は時間 t = 350 μs のものである. 被着体の中心部 (y = 0) の長さ l_1 (=188 mm), 被着体の幅 2w (=25 mm), 被着体の厚さ 2t (=6 mm), 被着体および接着層の縫弹性係数 ε_1 (=69.7 GPa), ε_2 (=206 GPa) および ε_3 (=3.33 GPa), スカラー角 0 (=45°) および相対速度 v (=766.8 mm/s) は一定とし, 接着層の厚さ t_n = 0.1, 0.5 および 1.0 mm を想定した. なお, 接着層の n 軸方向のメッシュ分割はすべて同様で 2 分割である.

本研究で扱った接着層厚さ t_n の範囲内では接着層厚さが大きくなるにつれ, 最大主応力 σ_v の最大値が小さくなることがわかった. したがって, 接着層厚さ t_n が大きくなると接着層を非吸収される衝撃エネルギーが増加するためであると考えられる. また, 接着層厚さ t_n が 0.5, 1.0 mm の場合には接着界面において比較的応力の増減が小さく応力分布が緩やかであるが, 接着層厚さ t_n が 0.1 mm のように小さくなると接着界面端部の応力が増加し, 応力分布に変化が見られる. この傾向は京極らの研究結果とは異なった傾向を示している.

4.5 被着体の材質の組み合わせが接着界面の応力分布に及ぼす影響

Fig. 11 はスカラー接着二者の被着体の材質の組み合わせが接着界面 (n = ±0.05, z = ±3.0) の最大主応力 σ_v の応力分布に及ぼす影響を示す. 縫軸および縫軸は Fig. 8 と同様である. 各々の分布は Type A および Type B のそれそれぞれの接着二における伝播が最大値を示した時間 (Type A = 350 μs, Type B: t = 400 μs) のものである. 被着体の中心部 (y = 0) の長さ l_1 (=188 mm), 被着体の幅 2w (=25 mm), 被着体の厚さ 2t (=6 mm), 接着層の縫弹性係数 E = (3.33 GPa), スカラー角 0 (=45°) および相対速度 v (=766.8 mm/s) は一定とし, Table 2 にも示す Type A および Type B の 2 種類のスカラー接着二者を想定した.

本研究のスカラー接着二者において最大主応力 σ_v の最大値は被着体の材質の組み合わせによらず, 衝撃引張り荷重を直接受ける下部被着体と接着層との界面 (n = -0.05, t_n = 0.1 mm, l_1 = 188 mm, 2w = 25 mm, 2t = 6 mm, v = 766.8 mm/s)
$z = \pm 3.0$ に発生することがわかる。また、タイプ別で見るとき、Type B は Type A が最も主応力の最大値が大きく、Type A のスカーフ接着体は下部被着体の材質が軽鋼 SS400 であり、重厚、受け皿および下部被着体を含み量が増加する。これにより、接着層に入射する衝撃エネルギーが Type B のそれより大きくなるのでこのような結果になるものと考えられる。あるいは、被着体のエネルギー吸収能の観点から、衝撃荷重を直接受ける下部被着体が軽鋼 SS400 の Type A の場合、下部被着体がアルミニウム合金 A6063 の Type B の場合に比べてエネルギー吸収能が小さく、接着層に分担されるエネルギーカットが増加する。その結果、最大主応力の最大値が大きくくなるものと考えられるが、詳細については今後検討が必要である。

5. 解析結果と実験結果の比較

Fig. 12 は接着体の接着面近傍における θ 方向のひずみ ε_θ の時間変動に関する実験結果と有限要素法による解析結果との比較を示す。Type A、スカーフ角度 $\theta = 45°$ の位置(1)および(2)における比較を示す。縦軸は $\varepsilon_\theta/10^{-4}$ であり、横軸は衝撃荷重前荷重の作用期間である。実験結果との比較のため、解析モデルの寸法および材料定数は試験片のそれと対応させた。すなわち、実験を高さ H = 30 mm から自由落下させたため、衝突速度 $v = 266.8$ mm/s を設定し、衝撃荷重 27 J を与えて解析を行った。実験結果と解析結果の傾向はよく一致しており、本研究で用いた解析モデルおよび解析結果の妥当性が確かめられた。

6. 結言

衝撃引張り荷重を受ける被着体が異種材料のスカーフ接着体の三次元有限要素法による応力応答解析およびひずみ応答に関する実験を行い、以下の結果が得られた。

(1) 本研究で用いたスカーフ接着体の寸法、形状および材質において最大主応力の最大値は衝撃荷重を受けた下部被着体と接着層との間に発生する。

(2) 接着層面において、スカーフ角 θ が大きくなるにつれて最大主応力の分布は狭くなり、特にスカーフ角 $\theta=52.47°$ および $75°$ でより均一になる。また、各応力成分の分布状態もこれらのスカーフ角においては同一になる。

(3) 接着面の面積係数 E_0 が大きくなると最大主応力の最大値は大きくなる。

(4) 接着層厚さを小さくすると接着界面端部に生じる最大主応力の最大値が大きくなり、分布状態が変化する。

(5) 被着体の材質の組み合わせによらず、最大主応力の最大値は下部被着体と接着層との間に発生し、Type A のスカーフ接着体の方が最大主応力の最大値が大きくなる。

(6) 冲撃引張り荷重を受ける被着体が異種材料のスカーフ接着体の接着面近傍に生じる被着体のひずみ応答に関する実験を行い、解析結果と実験結果の傾向はよく一致した。

参考文献

4) 穂木: 引張りを受けた鋼のスカーフ接着体の三元応力変形解析, 日本機械学会論文集 (A 編), 50 (1984), 67-78.
5) 池、島田: 被着材料の応力変形解析 (第 2 章), 日本機械学会論文集 (A 編), 30 (1964), 1192-1198.
6) 朝倉秀雄: 削いた表面を用いる被着体の二次元応力問題, 日本機械学会論文集, 19-83 (1953), 1-5.
7) 京都、杉本、平上: スカーフ接着体の応力評価 (第 1 章), 被着体が異種材質の被着体, 日本機械学会論文集 (A 編), 53 (1987), 689-690.
9) 金野、杉本、高野: 金属材質の接着面を受ける材料応力解析, 日本機械学会論文集 (A 編), 59 (1993), 646-653.
18) 髙口, 沢, 志村: 衝撃荷重を受けるスカーフ接続接続の三次元有限要素法応答解析, 日本接着学会誌, 35 (1999), 562-569.