レーザ溶接による304ステンレス鋼製容器の製造に関する研究*

北原 彰一**, 前原 健次**, 武田 慎之助**, 松嶋 朗***

A Study of Laser Welding on 304 Stainless Steel Vessel Fabrication

by KITAGAWA Akikazu**, MAEHARA Kenji**, TAKEDA Shinosuke** and MATSUNAWA Akira***

The purpose of this study is to weld long 304 stainless steel vacuum chambers without deformation. The requested accuracy is less than 1 mm per 4,700 mm. To achieve this high accuracy welding, the authors compared suitable welding method among EBW, LBW and GTAW. According to this study, they decided that the LBW is the most appropriate method because of its highest welding speed and deep penetration ability that leads lower deformation. As there is less information of laser welding deformation, the present authors conducted some basic experiments on laser welding deformations of 304 stainless steel. In this report, following test results were obtained on the long chamber fabrication.

1. An equation of maximum deflection for 304 stainless steel laser welding is derived as $d=0.04\alpha Q/(c^2\times p)$ \([\mu m] \cdot Z/J\).
2. The maximum deflection has linear relationship to heat input Q (J/mm) and to the welding distance from neutral axis.
3. The compressed area of laser welding is fairly large compared to weld bead area and it expands almost all 10mm plate thickness close to weld bead.
4. According to the information above, the authors could weld 4,700 mm long vacuum chambers within the requested accuracy.

Key Words: Laser welding, Welding deformation, Stainless steel, Long chamber, Neutral axis

1. 結 言

304ステンレス鋼の長尺容器は真空関係や原子力関係でしばしば利用され、その容器には非常に厳しい寸法精度を要求されるものが多い。しかしながら、304ステンレス鋼はその熱的・機械的性質から大きな溶接変形が生じやすく変形の少ない溶接法の採用が期待される。検討となる溶接法は電子ビーム溶接やレーザ溶接およびTIG溶接が挙げられるが、比較的低圧で溶接される電子ビーム溶接やレーザ溶接による溶接変形をまとめたものはほとんど見当たらない。このため、4,700 mmと長尺で高精度が要求される超高真空容器の製作を目的として、検討となる電子ビーム溶接、レーザ溶接およびTIG溶接の特徴を比較することで、最終的に選択されたレーザ溶接法の変形に関する基礎研究を行った。ここでは長尺容器製作で最も大きな問題となる曲り（たわみ）変形について基礎的な実験を実施し、最大たわみを与える関係式などのレーザ溶接検手設計に有用な知見を得た。これからの知見を基に可能な設計変更を実施することで、4,700 mmの長尺真空容器を高精度に製作できた。本報告では実験で得られた知見とレーザ溶接による長尺容器の製作過程で確認された変形挙動などについて述べる。

2. 検討対象の長尺ステンレス鋼製真空容器と要求性能

対象となる長尺ステンレス鋼製容器の模式図を Fig. 1 に示す。容器は7つの部材で構成され寸法は幅300 mm、幅150 mmおよび全長4,700 mmである。上部の細長い空間をビームが通過するためビーム室が存在し、下部の正方形に近い空間は真空ポンプが取り付けられ容器全体を真空供給するための空間でポンプ室と呼ぶ。ポンプ室は約10 mmの4枚の板から構成されるが、ビーム室を超高真空
空にするためビーム室との境界部はできるだけ大きな開口部を要求されおり、スリットが一定間隔で設けられた構造となっている。したがって、ポップ室の側面はこの部分で非常に小さいものとなっている。ビーム室は狭いと頭部からなり、ビーム室側壁は高さ方向に板厚が異なり倒壁中央部位置で板厚が最も薄くなっている。この部分は外部機器との近接効果により2mmの厚さが要求され、変形はこの部分にもっとも顯著にあらわれる構造となっている。頭部はビーム室全体の形状を保つ目的のため突出しで剛性の大きい塊状部材が用いられる。この頭部部材は両側からビーム室側壁と溶接されるため、図中での左右方向の変形は両側溶接で打ち消されるが、上下方向の変形は両側の溶接による影響が加算されると予想される。本容器は全長4,700mmと長く、にもかかわらず、要求される平度度は設計要求から±1mm/4,700mmと厳しいものである。さらに、この容器は異形であり剛性があり、ためられることで、垂直方向での変形を最小限まで低減する必要があります。ところが、ビーム室は直接容器の側面を変形するために、その溶接変形は比形長さの2倍大であると言われる。したがって、精度確保にはこの部分の変形防止が最も重要である。したがって、レーザ溶接による構造物の変形に関する基礎データが必要となった。第1の課題は重量が薄いビーム室の彎曲であるが、これに比べて得られた構造変形に関する基礎データを開発形状の溶接条件に対する指針として利用した。

3. 溶接法の比較

3.1 超高真空容器の製造で要求される溶接性能

超高真空容器の製造で要求される溶接性能は、これを起因するビームホールなどの欠陥を発生させないこと、ガス放出の少ない清浄な溶接金属であること、溶接変形の少ないことである。以上の要求により、選択される溶接法は、電子ビーム溶接（EBW）、レーザ溶接（LBW）およびTIG溶接（GTAW）が採用されることとなる。第1の方法を起因するビームホールなどの欠陥を発生させないことを要求するのは、清浄な表面ビードを得ることが有効となる。清浄な表面ビードの形状に対し、CO₂レーザ溶接は、溶接部表面に発生するプラズマで高速溶接でまかな表面ビードを形成させる特徴を持っているが、電子ビーム溶接では金型蒸発の蒸発が激しく清浄な表面ビードを形成することは10 mm/s程度以下の低速溶接の適用が必要となる。TIG溶接においては清浄な表面ビードが得られるが、溶接速度は電子ビームよりも低速となる。第2のガス放出の少ない清浄な溶接金属の要求に対しては高真空中で溶接する電子ビーム溶接が最も適され、溶接金属は母材よりも清浄となる。通常レーザ溶接は1, TIG溶接の順となる。第3の溶接変形の少ないことを要求とは、容器製造に必要な溶接深さが強度要求より決定されるため、低干渉で溶接深さがえられる電子ビーム溶接やレーザ溶接などの高エネルギー密度溶接法が望まれる。以上の観点から適切な溶接法を選択することになるが、本容器は長さ4,700 mmと長く、電子ビーム溶接を採用するとすればそれより長い溶接室を準備する必要があり、溶接室の拡張工事や電子ビーム溶接装置の規模増大は大きなコストがかかるため、電子ビーム溶接法の採用を断念した。このため、7 000 mm の加工範囲をもつ（財）近畿高エネルギー加工技術研究所の大出力レーザ溶接装置の適用とTIG溶接の適用を検討することとした。

3.2 レーザ溶接とTIG溶接の溶接深さ比較

レーザ溶接の溶接深さを確認するためにレーザ出力を7.7 kW一定として種々の溶接速度でビードオンテストを行った。また、目標容器の製造では下向き溶接と横向き溶接が必要となるため姿勢による溶接深さ比較を行った。Fig.2に姿勢溶接の影響を示す。大半の溶接速度が20 mm/s以上の高速であり、溶接深さが7 mm程度以下の

Fig.2 The effect of welding position on penetration depth.

Fig.3 Relations between heat input and penetration depth.
ため溶融池は重力の影響をほとんど受けず、溶込み深さに対する溶接姿勢の影響はほとんど見られない。Fig. 3 に示すとおり、溶込み深さの変化を示す。4 mm の溶込み深さが必要であるとされる部位に対しては、入熱 Q を 154 J/mm、3 mm の溶込み深さが必要であるビーム室の溶接では入熱 Q を 121 J/mm とすれば良く、低い入熱で溶接可能であることを示している。Fig. 4 に比較対象溶接法である TIG 溶接との溶込み能力を比較して示す。TIG 溶接の場合は 4 mm の溶込み深さが難しく、開先を設けた 2 層溶接が必要となることがわかる。仮に 3 mm の溶込みを確保する条件でレーザ溶接と TIG 溶接を比較すると、レーザ溶接の場合は 121 J/mm の入熱で 3 mm の溶込みが可能であるが、TIG 溶接の場合は 360 J/mm の入熱が必要となり、TIG 溶接ではレーザ溶接の約 3 倍の入熱が必要となることがわかる。

3.3 溶接法の決定

前項において、ポンプ室を TIG 溶接で施工するには 2 層溶接が必要となり変形が大きくなることが判明し、3 mm の溶込み深さが必要であるビーム室の溶接では 360 J/mm とかなり大きな入熱が必要となることが分かった。また TIG 溶接では 360 J/mm の条件で TIG 溶接を実施したとしても、ビーム室の根厚は 4 mm である。これにより、根厚の 2 倍で除して求められる入熱パラメータ \(H_D = Q/H_D \) で除算すると、\(H_D = 225 \) となり、角変形は小さいが大きな縦曲り変形の発生する入熱があることが分かった。これにより、TIG 溶接では 4700 mm のビーム室の形状を確保できないと判断し、適用すべき溶接法はレーザ溶接法に絞られた。

4. 縦曲り変形実験

4.1 供試材料と実験方法

供試材には 304 ステンレス鋼を用い、試験体の寸法は断面ピッチを模した 65 W×500 L×10 t を用いた。レーザ出力は 7.7 kW 一定とし、溶接速度を 33 mm/s～100 mm/s と変動させ 1 mm～6 mm の溶込み深さが得られる条件をも含め検討し、もっとも変形が大きい 33 mm/s の速度で溶接位置と中央軸との距離を変化させ実験を行った。

4.2 変形の計測方法

この実験条件では試験体に溶接線間隔が収縮する大きさの縦曲り変形が生じ、その形状は円周にかなり近い形状となった。また、最大たわみは溶接線中で発生するため自重の影響を避ける目的で動置き状態にし、この位置をノギスで計測した。

4.3 変形量と溶接位置の関係

頭部ブロックを模した 65 W×500 L×10 t 材料の断面ピッチ Y 軸上を入熱 Q (J/mm) を変化させて溶接した場合の入熱 Q と試験体長さの中央で発生する Y 方向最大たわみ \(\delta_y \) の関係を Fig. 5 に示す。入熱 Q と最大たわみ \(\delta_y \) の関係は次式に近似される。

\[
\delta_y = 0.063Q - 0.0704, \quad R^2 = 0.9999
\] (1)

この近似式の相関係数は \(R^2 = 0.9999 \) と 1 に非常に近い値を示すことで確認でき、入熱 Q と最大たわみ \(\delta_y \) が比例関係を持つことが分かった。したがって、たわみを小さく保つには、可能な限りの低い入熱で溶接する必要があることが分かった。

Fig. 6 は入熱 Q を 231 J/mm 一定とし、断面ピッチの Y 軸と平行に中立軸 \(D_x \) ずれた場所を溶接した場合の最大たわみ \(\delta_y \) を示す。溶接位置ずれ量 \(D_x \) と最大たわみ \(\delta_y \) の関係は次式に近似される。

\[
\delta_y = -0.0102D_x + 1.4208, \quad R^2 = 0.5316
\] (2)

しかし相関係数 \(R^2 = 0.5316 \) と非常に相関の悪い値を示し、Y 方向最大たわみは X 方向の溶接位置ずれ量 \(D_x \) にはほとんど影響を受けないと考えられた。
Fig. 6 The effect of welding position on the longitudinal deflection δ_x (mm).

Fig. 7 The effect of welding position on the longitudinal deflection δ_y (mm).

Fig. 7 は入熱 Q を 231 J/mm一定とし、溶接位置がX方向に D_x (mm)ずれた場合のX方向最大たわみ δ_x (mm)の関係を示す。この場合、溶接位置ずれ量 D_xと最大たわみ δ_xの関係は次式に近似される。

$$\delta_x = 0.0293D_x - 0.0656, \quad R^2 = 0.9784$$

したがって、溶接位置ずれ量 D_x とX方向最大たわみ δ_xは非常に高い相関関係を持つことが明らかとなった。これより、断面中心から溶接位置までの距離は縦曲り変形に大きな影響を与え、縦曲りの抑制にはこの距離をできるだけ短くする必要があることが分かった。つまり、目的の達成に頭部ブロックの溶接形状が防げ、これは $D_x = 0$ となるよう頭部ブロックを設計し、その断面中心近傍を溶接することが必要となった。

4.4 縦曲り変形に関する考察

4.4.1 たわみ式の決定

アーク溶接の縦曲り変形に関する研究は国内外に数件ある。そのうち今回の実験に最も近いものが辻らの報告である。この報告では、炭素鋼の縦を溶接した帯板に生じる縦曲り変形実験結果より、最大たわみ δ は次の関係を持つことが報告されている。

$$\delta = 0.05 \cdot \left(\frac{c}{c + \rho \cdot L \cdot Z} \right) \cdot \left(\frac{Q_x}{v} \right)$$

ここで c：縦張係数、c：比熱、ρ：密度、L：部材の長さ、Z：断面中立軸からの距離、I：断面2次モーメント、Q_x：単位時間あたりの熱量、v：溶接速度。

0.05：炭素鋼の実験で求められた定数。

つまり、最大たわみ量 δ は (1) 式の右辺第1項の材料物性に依存する項、第2項の断面中心から溶接位置までの距離 Zと材料の形状によって決定される項および第3項に依存する項、第4項の単位時間あたりの入熱に依存する項の積で求められることを示している。

今回の実験では材料が304ステンレス鋼であり (4) 式の第1項は一定、第2項の L は500 mm一定であるため (4)式は入熱および熱物性項に部材寸法で決まる項に書き直され、次式となる。

$$\delta = A \cdot \left(\frac{Q}{c + \rho \cdot L \cdot Z} \right)$$

ここで A：本実験で求められる定数、c：縦張係数、c：比熱、ρ：密度、L：部材の長さ、Z：断面中立軸からの距離、I：断面2次モーメント、Q：単位時間あたりの熱量。

Fig. 5 に示したデータでは Z と Q が変数、Fig. 6 に示したデータでは $Z = D_x$ のみが変数、Fig. 7 に示したデータでも $Z = D_x$ が変数であるがFig. 6 とは曲りの方向が異なり断面2次モーメントIが相違する。そこで、300℃での304ステンレス鋼の性質値をそれぞれ $a = 1.23 \times 10^{-4} \text{ (1/℃)}$, $c = 0.536 \text{ (J/g・℃)}$, $\rho = 8.03 \times 10^{-3} \text{ (g/mm³)}$ とすると、

最大たわみ量 δ は次式となる。

$$\delta = (2.86 \times 10^{-4}) \cdot A \cdot Q \cdot L \cdot Z \cdot I$$

式 (6) とFig. 7 に示したX方向の溶接位置ずれ量 D_x とX方向最大たわみ δの関係式 (3) より、次式が得られ、

$$\delta = (2.86 \times 10^{-4}) \cdot A \cdot 231 \cdot 500 \cdot Z / 228854 = 0.0293 \cdot Z$$

これより比例項 $A = 0.04$ と求められる。これはアーク溶接で求められた0.05より20%少なく、レーザ溶接で発生する固有ひずみがアーク溶接に比べ少ないことを
示唆していると思われる。
したがって、304 ステンレス鋼を用いたレーザ溶接時の線曲り最大たわみは次式で求められること分かった。

$$\delta = 0.04 \cdot \left[\frac{Q}{c \cdot p} \right] \left(\frac{L}{I} \right) \cdot Z$$

(8)

4.4.2 収縮力およびその発生領域と固有ひずみの発生温度に関する考察

線曲り変形式 (8) を用いると、レーザ溶接時の中間的な収縮力およびその働く位置を考察することができる。ここでは Fig.5 に示した 231 J/mm, 116 J/mm, および 77 J/mm の 3 セット条件について、それぞれの等価的な収縮力が働く位置をそれぞれ Z、Z および Z として以下の 3 式より考察する。この場合 (8) 式の右辺の入熱項 Q および収縮力が働く位置 Z を除いた値は一定となり (9) 式が導かれることになる。

$$\delta = 5.28 \times 10^{-3} \cdot Q \cdot Z$$

(9)

したがって、考察する 3 入熱条件について以下の 3 式が得られる。

$$1.3496 = 5.28 \times 10^{-3} \cdot 231 \cdot Z$$

(10)

$$0.657 = 5.28 \times 10^{-3} \cdot 116 \cdot Z$$

(11)

$$0.4147 = 5.28 \times 10^{-3} \cdot 77 \cdot Z$$

(12)

これらより、Z = 1.12 mm、Z = 1.06 mm および Z = 1.00 mm が得られた。

Fig.8 に入熱 Q と溶融断面積 W との関係を示す。入熱 Q と溶融断面積 W は比例関係をもつことが分かった。これより、入熱 Q と圧縮力の発生量が比例すると推定できる。入熱 Q が小さい場合には、板表面部に圧縮ひずみの作用領域が偏在していると想定されるが、前に求められた収縮力が働く中心位置 Z。Z および Z の値は 1 mm 程度であり実験範囲では入熱の大小かかわらず圧縮ひずみが作用する領域の中心が板厚中心付近に存在することを示している。

このため、塑性変形（圧縮力有ひずみ）を発生する温度に上昇を、村川がレビューニで示した「塑性変形の発生領域は開能面を受ける弾性拘束された棒を想定し完全拘束状態を仮定した単純モデルで考えると、塑性変形の発生領域は降伏応力をヤング率と線膨張係数の値で鉄し求められる温度以上に到達した領域である」とする考え方により、ステンレス鋼での温度上昇を求めると 80°C となる。この温度は、231 J/mm の入熱で 650 W×500 L×10 t の試験体が均熱された場合の温度上昇とほぼ一致することから、試験体の各部分で圧縮固有ひずみが発生していることが推定できた。これより、圧縮固有ひずみが作用する領域の中心位置を示す Z、Z および Z 倍が 1.00 mm 程度と断面中心近傍を示したと理解された。

一方、両端に曲げモーメント M が与えられた単純梁の最大たわみは梁の中央で発生し次式で表される。

$$\frac{M}{E} = \frac{F}{E} \cdot Z$$

ここで M：曲げモーメント、E：ヤング率

(13) 式と (5) 式を比較すると (5) 式の$$\sigma \cdot Q / (c \cdot p)$$ は (13) 式の荷重 F をヤング率 E で除したものをpondし、F/E はフックの法則により次式で表される。

$$F = \sigma \cdot S \cdot E$$

(14)

ここで S：荷重のかかる面積、ε：ひずみ

したがって、$$\sigma \cdot Q / (c \cdot p)$$ はレーザ溶接により発生するひずみとその発生面積の積に相当すると考えられる。

次に Fig.5 で求められた入熱 231 J/mm、Z = 1.12, 最大たわみ$$\delta = 1.38$$ の場合の等価収縮力とその値から求められるレーザ溶接での固有ひずみの発生領域について (13) 式を用いて考察する。

$$\delta = 1.38 = \frac{F}{E} \cdot Z \cdot L^3 = \frac{F}{E} \cdot 1.12 \cdot 500 \cdot 8 \cdot 2.06 \cdot 10^3 \cdot 5417$$

(15)

上式より等価収縮力 F = 43998 (N) が得られる。

固有ひずみは 304 ステンレス鋼の 0.2% 緩下応力 206 MPa を超えた領域で発生すると考えられる。次式で示す荷重と応力の関係より

$$F = \sigma \cdot S$$

(16)

レーザ溶接で固有ひずみの発生した面積 S は S = 43998/206 = 214 (nm²) となる。これより、板厚が 10 mm の供試体には溶接線近傍の 21 mm 調の広い範囲に圧縮固有ひずみが発生していることが分かった。

Fig. 8 Relations between heat input and cross section of the welds.
5. 長尺真空容器の製作

長尺真空容器の製作で問題となる最大たわみ変形に関してすでに (7) 式で以下のように求められている。

$$\sigma = 0.04 \cdot \left[\frac{Q}{cP} \right] \left(\frac{L}{Z} \right)^2$$

容器の製作にあたり、たわみ変形 $$\sigma$$ を最小とする目的から、許容される最大荷重を保証する入熱 $$Q$$ の選定と断面中立軸からの距離 $$Z$$ が最小となる溶接位置の選定ならびに可能な範囲で断面 2 次モーメント $$I$$ を大きくすることを設計者と検討すべきであることが分る。これらを考慮し、長尺真空容器をレーザ溶接で製造した結果を以下に示す。なお、製作した長尺真空容器は 4 体ともターボ分子ポンプのみの排気にで超真空に到達し、要求真空性能を満足した。

5.1 レーザ溶接状況

Fig.9 にポンプ室のビーム室の取り合い部を斜め上方よりレーザ溶接している状況を示す。この場合には、当初ワークとレーザヘッドの干渉回避を目的に斜め 45°の開先を検討したが回転変形が基下ることが変形防止の目的がえられなかった。このため斜め側面方向からレーザ溶接を実施できるインシュレータヒットを検討した。普通この部分のレーザ溶接ではレーザヘッドとワークが干渉する問題のため溶接できないが、利用した大出力 CO2レーザ装置はビーム室高さをカバーするのに十分な長尺長の集光ミラーを用いることができたことの溶接が可能となった。

5.2 製作時の容器の変形挙動

Fig. 10 にポンプ室溶接時の変形挙動を示す。溶接はレーザ出力 7.7 kW、溶接速度 50 mm/s とし、図中の模式図に示す順序に従い行った。変形挙動の測定位置は、処方曲が最大になることが予想される溶接長さの中央位置で溶接を行う反対側とした。変形挙動の測定は、この位置にダイヤルゲージをセットし溶接中から溶接後の冷却過程を含めて実施した。溶接開始直後、ポンプ室は 50 μm 程度測定側へ移動するが、溶接が溶接面のため伸びはじめると溶接側が凹むようになり変形が生じるため。測定側は 650 μm 程度くぼむようになる。この変形挙動を溶接終了時を示す①、②、③、および④の時点で計測される。その後 1,400 秒程度経過すると 200 μm 程度の変形を残し終了する。この値はビード 2、3 および 4 となっているば同様であり、両面の対称に溶接すれば変形は打ち消される。
Fig. 11 Side wall distortions on the beam chamber welding.

Fig. 12 Top head distortion on the beam chamber welding.

ことを示している。また、①から④に示すように最大くぼみ量は溶接が進むにつれて減少し、ボンプ室が溶接されるにつれ剛性が増大し、減少することも分かった。

Fig. 11 はビーム室下の縦手に発生する横曲り変形によるビーム室左右壁の膨れ量測定結果を示す。測定は剛性の高い NC レーザ加工装置の加工ヘッドにジアレバーを取り付け実施した。ビーム室の左右壁は機械加工後に平均約 0.1 mm くぼんだ状態であったが、溶接後には 0.5 mm 膨れ状態に変化した。この変形は縦手部の角度変形により発生し、ビーム室側壁が膨れる方向にしか作用しない。しかしながら、低圧で施行できるレーザ溶接の採用により膨れ量を低減させ目標要求精度を達成することができた。

Fig. 12 にビーム室頭部の上下方向変化を示す。この溶接はビーム室の形状を決定する最重要溶接部であるが、溶接後でのビーム室頭部の変形はほとんど見られず目標と

した容器の精度を満足できた。これは、繰曲り試験データに基づき溶接位置をビーム室頭部の断面中心に一致させるように調整し、溶接変形を低減させた効果によるところが大きい。

6. 結論

4.7 m の長尺ステンレス鋼製容器を高精度に製作するため、レーザ溶接による繰曲り溶接変形に関する基本データを得た。この基本データを基に溶接設計を行なうとともに、容器製造時の変形挙動を追跡・評価した。その結果、以下の結論を得た。

(1) 304 ステンレス鋼のレーザ溶接における綾曲り変形量は入熱なりびに断面中心からの距離に精度よく比例し、最大たわみを示す点として次式が導出した。

\[\delta = 0.04 \cdot \left[\alpha \cdot Q/c \cdot r \right] \left(L^2 \cdot Z/l \right) \]

(2) 304 ステンレス鋼のレーザ溶接における最大たわみの係数は 0.04 となり、アーク溶接で求められた 0.05 に比べ 20% 少ない。これは、レーザ溶接で発生する固有ひずみはアーク溶接に比べ少ないことを意味している。

(3) 压縮応力を発生させる固有ひずみの発生領域はレーザ溶接の溶融断面よりもはるかに大きく、小入熱レーザ溶接でも 10 mm に試験材の溶接部近傍 21 mm の全域に及んでいることが確認された。

(4) レーザ溶接の採用により、7,000 mm の 304 ステンレス鋼長尺真空容器を平行度±1 mm 以内の精度で製作することに成功した。

(5) レーザ溶接で発生する表面プラズマは高速溶接でもピード表面を滑らかにする効果を有し、アングラカットを防ぐ効果があった。これにより低入熱溶接条件を採用すること
とが可能となった。

7. 参考文献

2) 安田新三：学位論文論文（大阪大学）."大型構造物への電子ビーム溶接法適用のための基盤研究", 昭和59年1月, P83-P92
8) 細田正紀, 佐藤邦彦: "溶接力学とその応用", 航空出版, 386-389.