溶接学会論文集
Print ISSN : 0288-4771
耐めっき割れ性に優れた低合金鋼において過剰応力で誘起される亜鉛ぜい化割れへの熱影響部組織と溶融亜鉛温度の影響
武藤 宏段野 芳和山本 啓伊藤 和博
著者情報
ジャーナル フリー

2018 年 36 巻 4 号 p. 230-237

詳細
抄録

Zinc induced cracking (ZIC) occurs under excess tensile stress even in steels suitable for hot-dip galvanizing kettles. In this study, it was examined how the excess stress affects microstructure of the base metals and heat-affected zones (HAZs), that relates to molten zinc diffusion along the grain boundary leading to ZIC. Two kinds of steels, exhibiting two-phase (ferrite and perlite) structure (Steel A) and ferrite structure (Steel B), were selected. Tensile tests were conducted with a V-shaped notch, at which a piece of zinc wire adhered, in air at 450°C and 500°C. They failed with sudden drop in flow stress at their ultimate tensile strength (i.e. excess tensile stress). The local tensile strain at the failure point was estimated based on the aspect ratio change of grains beneath the V-shaped notch before and after the tests. The Steel A specimens with the base metal and HAZ composed of ultrafine bainitic structure failed without exhibiting ZIC at similar local tensile strain at 450°C, while the specimen with HAZ composed of bainitic structure exhibited ZIC. The two-phase structure seems to be strong enough, while the ultrafine bainitic structure prevented zinc diffusion along its grain boundary maybe with carbon and/or carbon precipitates. The Steel B specimens with the base metal and HAZs exhibited ZIC and the critical strain decreased with decreasing the grain size at 450°C. The intermetallic compound layer (IMCL) formed between steels and molten zinc at 500°C was thicker than at 450°C, and thus ZIC was hardly observed in similar tests at 450°C with holding time of 20 mins before starting the test. Thus, the tests were immediately started upon reaching 500°C. Consequently, the ZIC at 500°C was divided into three groups: no ZIC in microstructure with high strength and ZIC dependent and independent on existence of IMCL.

著者関連情報
© 2018 社団法人 溶接学会
前の記事 次の記事
feedback
Top