A Study on Separation of 99Mo from Neutron-irradiated UO$_2$ by Precipitation as Ammonium Molybdophosphate

Masakazu TANASE and Eiji SHIKATA

Production Development Section, Division of Radioisotope Production, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken, Japan

Received April 20, 1976

1. Introduction

Technetium-99m, the short-lived (6.0 h) daughter nuclide of 99Mo, is used extensively in diagnostic medicine because of the advantages of its short half-life, γ-ray emission of moderately low energy (140 keV) and ease of combination with many medicines. The total amount of 99Mo consumed in radiopharmaceuticals has increased so rapidly in the past few years11 that the production and the supply of 99Mo are one of the most important missions of an organization for radioisotope production.

Molybdenum-99 having enough high specific activity for the medical application can be produced by nuclear fission of 235U. For the separation of 99Mo from fission products have been reported various methods such as adsorption on alumina column3, solvent extraction with di (2-ethylhexyl) phosphoric acid10 or the precipitation by α-benzoinoxime6. Those methods, however, include time-consuming and complicated procedures or have an danger of radiation decomposition of organic materials. In this work, a new, simple and practical separation method was developed, which based on the selective precipitation of fission-produced 99Mo. Uranium dioxide having a high melting point (2800°C) to tolerate temperature elevation during irradiation was neutron-irradiated and fission-produced 99Mo was precipitated as ammonium molybdophosphate from a solution of irradiated UO$_2$ in concentrated HNO$_3$. The salt precipitates even from HNO$_3$ solution of high concentration and so the whole process can be simplified. To explore this method, the quantity of H$_3$PO$_4$ and NH$_4$OH to form ammonium molybdophosphate, the reaction temperature, the standing time of the precipitate, the U concentration and the purification of product by recrystallization were studied in connection with the chemical yield of 99Mo.

2. Experimental and Results

2.1 Materials

(1) HNO$_3$: 14M, 7M and 2M
(2) (NH$_4$)$_6$Mo$_7$O$_{24}$: 0.24M in 8M NH$_4$OH
(3) NH$_4$OH: 15M and 8M
(4) H$_3$PO$_4$: 0.43M
(5) 99Mo tracer: Molybdenum-99 solution (carrier free) of about 0.1 mCi/ml
(6) UO$_2$: Pelleted UO$_2$ enriched in 235U up to 2.3%
(7) U (natural isotopic composition) solution: 0.36M in 7M HNO$_3$
(8) ZrOCl$_2$: 0.06M

2.2 Factors influencing recovery of 99Mo
Sample solutions, which consist of 20 ml of 7M HNO₃ and 2 ml of (NH₄)₆Mo₇O₂₄ solution tagged with ⁹⁹Mo, were prepared. To one of the solutions, 0, 0.1, 0.5, 1.0 and 5.0 ml of H₃PO₄ were stepwisely added, while 0, 1, 3, 5 and 7 ml of 15M NH₄OH were added to another solution after addition of 1 ml of H₃PO₄ solution. After each addition, the solutions were stirred for 1 min and then allowed to stand for 15 min. A small aliquot of supernatant liquid was taken from each solution and subjected to γ-ray spectrometry with an NaI (Tl) (3 in. φ x 3 in.) scintillation detector together with an aliquot of the original solution. The percentage of ⁹⁹Mo precipitated was determined by measuring the photopeak of 740 keV γ-ray. The increase of H₃PO₄ up to 1 ml increased the recovery of ⁹⁹Mo to about 40%, but it did not give any effect further. The addition of NH₄OH in the presence of H₃PO₄ showed better results and gradually increased the recovery of ⁹⁹Mo till 83%. In order to recover ⁹⁹Mo more effectively, the effects of heating and standing were studied. Five milliliters of NH₄OH and 1 ml of H₃PO₄ were added to 22 ml of a sample solution with stirring, while the solution was kept at 50 or 80°C in hot water. After 15, 30, 60 and 120 min, the percentage of precipitated ⁹⁹Mo was determined by the similar way described above.

The elevation to 50°C of precipitation temperature enhanced the ⁹⁹Mo chemical yields from 79% to 93%, but the elevation to 80°C and the prolonged standing of the mixed solution did not show any significant effects on the precipitation percentage of ⁹⁹Mo, which remained nearly constant around 93% during the standing of 120 min.

From these results, the addition of 2 ml of H₃PO₄ and 5 ml of 15M NH₄OH to about 20 ml of a sample solution at 50°C, and standing for 15 min were chosen as the optimal conditions and the separation of ⁹⁹Mo from irradiated UO₂ was carried out as follows.

2.3 Separation of ⁹⁹Mo from fission products

Uranium dioxide of 1.3 mg was enclosed in an quartz ampoule and irradiated in JRR-3 (2×10¹⁵n/cm²sec) for 288 hours. After cooling for 5 days, irradiated UO₂ was dissolved with 10 ml of 7M HNO₃. In order to investigate the influence of U concentration on the chemical yield of ⁹⁹Mo and the contamination of other nuclides, 0, 1, 2, 3, and 4 ml portions of 0.36M U solution and 2 ml of Mo solution were added to 16 ml portions of 7M HNO₃ containing 1 ml of the fission products solution. The total volume was adjusted to 22 ml with 7M HNO₃. The separation was carried out under the optimal conditions described above and the precipitation percentage of several nuclides was determined by measuring the γ-ray spectra of supernatant liquid and precipitate with a Ge (Li)-detector (ORTEC Co. 4.8 cc). The nuclides and photopeaks taken into consideration were as follows:

140Ba 162keV; ⁹⁹Mo 181keV; ¹³²Te 230keV; ²²⁹Np 278keV; ¹³¹I 364keV; ¹⁴⁰La 487keV.

As the 230 keV photopeak of ¹³²Te and the 364 keV photopeak of ¹³¹I overlap on the photopeak of 228keV of ²²⁹Np and the photopeak of 370 keV ⁹⁹Mo respectively, the area of 230 keV due to ¹³²Te and that of 364 keV due to ¹³¹I were corrected respectively by subtrac-
ting the areas of 230 keV and 364 keV photo-peak regions determined from the peak intensity ratios of 228 keV/278 keV (\(^{239}\text{Np}\)) and 370 keV/181 keV (\(^{99}\text{Mo}\)).

The precipitation percentage of the fission products in question is almost constant through the whole concentration range of U (Fig. 1). Molybdenum-99 was recovered with yield of above 95% and the amount of troublesome nuclides such as \(^{140}\text{Ba},^{140}\text{La},^{131}\text{I}\) etc. could be greatly reduced.

2-4 Purification of \(^{99}\text{Mo}\) product by recrystallization

To remove impurities such as \(^{239}\text{Np}\) and \(^{131}\text{I}\) contained in the \(^{99}\text{Mo}\) product, the purification was attempted by recrystallization. According to the procedure described above, \(^{99}\text{Mo}\) was precipitated as ammonium molybdophosphate from a solution of \(6.6 \times 10^{-2} M\) U containing the irradiated \(\text{UO}_2\). After washing with 20 ml of 2M HNO\(_3\), the precipitate was dissolved with 5 ml of 8M NH\(_4\)OH. Two milliliters of ZrOCl\(_2\) solution was added to the solution and zirconium hydroxide containing \(^{239}\text{Np},^{99}\text{Zr}\) and other contaminants was filtered off. The filtrate was boiled for reducing the volume to about 2/3 and the concentration of NH\(_4\)OH. Then, the ammonium molybdophosphate was precipitated by adding 2g of NH\(_4\)NO\(_3\), 2 ml of H\(_3\)PO\(_4\) solution and 2ml of 14M HNO\(_3\). This purification was repeated. The final product was radiochemically pure (Fig. 2) and more than 90% of each impurity nuclide present before the purification was removed. Loss of \(^{99}\text{Mo}\) during recrystallization was about 25%.

3. Conclusion

Molybdenum-99 was recovered from HNO\(_3\) solution of neutron-irradiated \(\text{UO}_2\) as molybdophosphate precipitate with a yield of above 95% under the optimal conditions. Molybdenum-99 obtained by this process was successfully purified by recrystallization. The \(^{99}\text{Mo}\) product in the form of molybdophosphate anion \([\text{H}_4\text{P} \text{MoO}_7\text{O}_6]^{-3}\) showed an advantage of being loaded into a milking column 8 times as many as commercial \(^{99}\text{Mo}\) products in the form of MoO\(_4^{2-}\), owing to the difference of Mo atoms per unit charge. The application of this method to the practical production of \(^{99}\text{Mo}\) would ensure reasonably high yields without the drawbacks of radiation decomposition of organic reagents, or complicated or time-consuming procedures included in methods hitherto proposed. The drawback of lowering the specific activity of fission-produced \(^{99}\text{Mo}\) can be overcome practically by using \(\text{UO}_2\) of which \(^{235}\text{U}\) is enriched; 1g of \(\text{UO}_2\) (\(^{235}\text{U}\) enriched to 70%) irradiated in a neutron flux of \(3 \times 10^{13} n/cm^2 \cdot \text{sec}\) for 7 days and cooled for 1 day, can be dissolved with 7M HNO\(_3\) and adjusted to 70 ml to give a U concentration below \(6 \times 10^{-5} M\), which enables the application of the proposed method to the production of \(^{99}\text{Mo}\) of about 20 Ci having specific activity of about 20 Ci/g Mo. When higher neutron flux is available, \(\text{UO}_2\) target of lower enrichment can be used without any modification.

References

2) Tucker, W.D., Greene, W.M. and Murenhoff, A.P.: Atompraxis, 8, 163 (1962)