Relation between 67Ga Uptake and the Stage of Inflammation Induced by Turpentine Oil in Rats

Yasuhito OHKUBO, Hiroyuki KOHNO, Takahiko SUZUKI and Akiko KUBODERA*
Department of Radiopharmacy, Tohoku College of Pharmacy
4-1, Komatsushima 4-chome, Sendai-shi 983, Japan
* Department of Radiopharmacy, School of Pharmaceutical Sciences,
Science University of Tokyo
12, Funagawara-cho, Ichigaya, Shinjuku-ku, Tokyo 162, Japan
Received September 7, 1984

For the establishment of the experimental system to judge easily the effect of anti-inflammatory drug, 67Ga-citrate was used. The weight of granuloma tissues induced by inflammable agent, turpentine oil, gradually increased and reached a maximum at 6 days after the administration of turpentine oil. Gallium-67 accumulation in the inflammatory lesions showed also a maximum at 6 days after that. Both patterns were closely similar each other. These results showed that the processes and/or stages of inflammation could be indicated by the pattern of 67Ga uptake.

Key Words: turpentine oil, inflammation, gallium-67-uptake

1. Introduction

For the screening and judgement of the effect of anti-inflammatory drugs, it is important in the first place to decide the processes and/or stages of inflammation. The decision, however, has required much effort and time. Namely, the extraction and isolation of several components, which fluctuate together with the stage of inflammation, from the tissues of inflammatory lesions, and the identification and quantitative determination of each one must be done each day after the administration of inflammable agent. Then, it is necessary for the development of a new anti-inflammatory drug to propose easy experimental system in which the decision of the stages of inflammation is rapidly able to be done.

Gallium-67 citrate has been used for diagnostic agent of various tumors and inflammatory lesions$^{11-20}$. Many reports concerning 67Ga accumulation in the inflammatory lesions induced by various inflammable agents have been presented$^{9-10}$, so it is thought that the processes and/or stages of inflammation will be able to be shown by the 67Ga uptake pattern in the inflammatory lesions.

In the present study, we attempted to establish the experimental system to judge easily the effect of anti-inflammatory drug by the change of the pattern of 67Ga uptake in the inflammatory lesions.

2. Materials and Methods

Animals: The rats used were males of the Wistar strain weighing 150 - 200 g, and were housed in wire mesh cages in a room temperature of $23\pm1^\circ$C and in relative humidity of $55\pm5\%$.

Gallium-67 citrate: Gallium-67 citrate (kindly supplied by Nihon Mediphysics Co. Ltd., Takarazuka, Japan) was diluted with 0.08 M sodium citrate to 925 kBq/ml (25 µCi/ml) and was intravenously administered at a dose of 185 kBq/rat.

Induction of granuloma tissues: The induction of granuloma tissues was performed by two different methods on the same animal. One was the paper pellet implantation method and another was the air pouch method. The former and the latter were carried out essentially by the same method described by Tanaka, et al.9 and Selye9, respectively. Namely, paper pellet used was the paper disc (size 8 m/m) for the analysis of antibiotics. Paper pellet dipped in turpentine oil was implanted in the subcutaneous tissues of the abdominal both side walls of each animal, and the open wound made was closed.
with the surgical binder, Aron Alpha A (Sankyo Co. Ltd.). Air pouch was made on the back of rat by the injection of nitrogen gas instead of air at a volume of 8 ml, and then 0.5 ml of turpentine oil was injected into the pouch. The administrations of inflammable agent to animals were done under the condition of anesthesia with sodium pentobarbital (50 mg/kg, i.p.), and after the operations antibiotics (Cefaloridine) was intraperitoneally administered at a dose of 50 mg/kg.

Removal of granuloma and other tissues: At an adequate time after the administration of radioisotope, rats were anesthetized by urethane (1.5 g/kg, i.p.) and immediately perfused with cold saline, and then granuloma and other tissues of their animals were removed.

Determination of radioactivity: Gamma radioactivity of several tissues removed was determined by a well-type NaI-scintillation counter (Aloka, ARC-300). The uptake ratios of radioisotopes in granuloma and other tissues were expressed to the formula as follows; Uptake ratio = (sample radioactivity (cpm)/sample weight (g))/(administered total radioactivity (cpm)/rat body weight (g)).

3. Results and Discussion

3.1 The change of granuloma weights induced by the administration of turpentine oil

Figure 1 shows the change of weights of granuloma tissues induced by paper pellet method (Pel-Granuloma) after the implantation of paper pellet dipped in terpentine oil. The weight gradually increased and reached a maximum at 6 days after the administration of turpentine oil, and gradually decreased until day 12.

3.2 The time course of 67Ga uptake ratios in various tissues

Figure 2 shows the time course of 67Ga uptake ratios in various tissues of rats administered with turpentine oil before 6 days. The uptake ratios of Pel-Granuloma, liver, and spleen increased up to 24 h after the administration of 67Ga, and then kept nearly the constant values until 48 h after, whereas that of blood decreased immediately after the administration.

From these results the experimental schedule in this study was decided as shown in Fig. 3.
3.3 The change of 67Ga uptake ratios in various tissues

This result is shown in Fig. 4. The uptake ratios in granuloma tissues induced by pouch method (Pou-Granuloma) and Pel-Granuloma gradually increased, reached a maximum at 6 days after the administration of turpentine oil, and then decreased until day 12. On the other hand, those of liver and spleen gradually decreased until day 6, and then reached at a constant values. The uptake ratio in the exudate induced by the pouch method was much lower than that in the granuloma tissues.

In the present study, two different methods, paper pellet implantation and air pouch method, were used for the induction of inflammatory tissues. The latter method was suitable for obtaining exudate, but the uptake ratio of 67Ga in it was much lower than that in granuloma tissues. In the former method it was easy to distinguish and separate granuloma tissues from surrounding normal ones, though it was difficult in the latter. From these results, paper pellet method will have to be used in this experimental system.

The weight of inflammatory lesions, granuloma tissues induced by turpentine oil, increased gradually and reached a maximum at 6 days after the administration of turpentine oil. Gallium-67 uptake ratio in granuloma tissues also showed a maximum at 6 days after the administration. Both patterns of the change of granuloma weight and the 67Ga uptake ratio were closely similar each other.

The results obtained in the present study showed that the processes and/or stages of inflammation could be easily indicated by the pattern of 67Ga uptake. It is thought that the experimental system established in the present study is useful for the judgment of the effect of anti-inflammatory drugs and the development of new one.

We will report the results of the judgment for the effect of anti-inflammatory drugs by using of this experimental system.

Acknowledgment

We are indebted to Dr. S. Tsurufuji, Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku University, for his kind experimental suggestion.

References

2) Higashi, T., et al.: ibid., 13, 196 (1972)
4) Ito, Y., et al.: Radiology, 100, 357 (1971)
要旨

テレビ油染蝋ラット炎症 Stage と 67Ga Uptake について

大久保恭仁、河野弘之、鈴木崇彦、久保寺昭子*
東北薬科大学放射薬品学教室
983 仙台市小松島4-4-1
*東京理科大学薬学部放射薬品学教室
162 東京都新宿区谷鉱河原町12

炎症部位への集積性が認められる 67Ga を用い、抗炎症薬の薬効判定を容易に行い得る実験系を確立することを目的として本研究を行った。テレビ油染蝋ラット肉芽組織の重量は起炎剤投与後、6日目でピークを示した。67Ga の肉芽組織への uptake パターンは肉芽重量変化と非常によく一致した。この事実は 67Ga uptake パターンを利用して炎症の stage を示し得るものと考えられ、この実験系は抗炎症薬の薬効判定に有用であると思われる。