Technical Note

Elution Test of an Ionic \(^{68}\)Ga Generator†

Masato YAMASHITA, Hitoshi HORII*,
Yoshio IHAMORI** and Norihiko MIZUKAWA**

Department of Radiology and **Neurosurgery, Kyoto Prefectural University of Medicine
Kawaramachi-Hirokoji, Kamigyoku, Kyoto-shi 602
*Department of Radiology, Nishijin Hospital
Nanahonmatsu-dori, Kamigyoku, Kyoto-shi 602

Received July 22, 1985

Key Words: gallium-68, generator, elution test, germanium-68

1. Introduction

A newly developed generator for ionic \(^{68}\)Ga yields a satisfactory \(^{68}\)Ga elution. The ionic \(^{68}\)Ga generator requires HCl but needs no EDTA for the elution. We examined this generator and evaluated the elution yield, the \(^{68}\)Ge breakthrough and the elution stability, and good results were obtained. The ionic \(^{68}\)Ga generator, with its simple procedure, will certainly be widely accepted for yielding \(^{68}\)Ga.

2. Materials and Methods

The \(^{68}\)Ga generator, obtained from New England Nuclear, Boston MA, USA through the Japan Radioisotope Association, uses \(^{68}\)Ge fixed by tin dioxide (SnO\(_2\)) and placed in a glass column. This column is connected to inlet and outlet tubes and placed in a small lead casing. The generator activity was measured by an ionization chamber from the top (the top shield was removed for measurements). The eluate activities were also measured with an ionization chamber or a Ge(Li) semiconductor detector. Germanium-68 breakthrough is determined by a scintillation counter from the daughter \(^{68}\)Ga present in the eluate at least 72 hours after the end of elution. Standard analytic reagent grade chemicals were used without further purification.

3. Results

3.1 Gallium-68 elution

A 511 keV energy peak was detected in the eluate and the half-life obtained from the plotted activity curve of the eluate was 68 minutes. Figure 1 shows the activity curve of the generator in three elutions at 68 minute intervals. About 62% of the radioactivity of the generator was removed by the first elution. The rest (38%) was unchanged by the consecutive elutions.

The activity of the generator in three elution at 68 minute intervals. About 62% of the radioactivity of the generator was removed by the first elution. The rest (38%) was unchanged by the consecutive elutions.

Fig. 1 Elutions and generator activity.

The values on this curve were almost the same as the values calculated from the equation;
Dec. 1985
M. Yamashita et al.: Elution test of an ionic 68Ga generator

Elution curve (—), and integrated elution curve (—·—) of the SnO$_2$ generator eluted with 1N-HCl solution.

Fig. 2 Elution curves.

$A(t) = (A_1 - A_2) \times (1 - \exp^{-0.693/68t}) + A_2$, where $A(t)$ is the expected generator activity at time t (min) after elution, A_1 is the generator activity before the initial elution and A_2 is the generator activity just after the elution.

Figure 2, showing the elution curve, indicates that 60% of the generator activity may be obtained in the first 5 ml eluate (>95% of elutable 88Ga). The maximum concentration was about 24 MBq/0.1 ml (0.65 mCi/0.1 ml). About 185 MBq (5 mCi) of 68Ga was obtained 280 days after the generator was made (one half-life of 68Ge).

3-2 Stability of the generator

A total of 200 elutions using 10 ml of 1N-HCl were carried out. At the end of this series of elutions the 68Ga yield was almost unchanged compared with the first yield.

3-3 68Ge breakthrough

One hundred elution samples were studied for 68Ge breakthrough. The eluates were measured by a semiconductor detector, and no apparent peaks were detected except for background and a 511 keV peak. The relative (generator activity=1) mean activity of the daughter 68Ga in 10 ml eluate was about 3.6×10^{-5} (S.D. $=2.3 \times 10^{-5}$), with some variant values found among them. Then we investigated the relationship between the breakthrough and the elution flow rate and found that the breakthrough increases as the flow rate increases showing a constant value after several elutions at a constant flow rate (about 1.9×10^{-5} (2.1$ \times 10^{-5}$) at 8 ml/min) and that it decreases as the flow rate decreases. It is, therefore, recommended that the elution should be performed as slow as possible to reduce the 68Ga breakthrough.

4. Discussion

The first 68Ge-68Ga generator was a solvent extraction type\(^3\): 68Ge in a complex form with acetylacetone in a buffered solution was extracted with cyclohexane with the 68Ge remaining in the aqueous phase. A separation based on chloroform extraction of the 68Ga-oxine complex was also reported\(^4\). While this type of generator usually gives high extraction yields (>70%), 68Ga is obtained in a complex form. A chromatographic type generator\(^3,4\) using EDTA solution for elution produces a satisfactory 68Ga yield, but with this type of generator the 68Ga yield decreases considerably with time and the 68Ga obtained by this method is in a tight complex form with EDTA. The ionic 68Ga generator\(^5\) requires only 1N-HCl eluate and the preparation of 68Ga labeled agents will be the easiest with this type of generator.

As ionic 68Ga can not be used for in vivo administration, radiochemical purity and chemical contamination in the eluate are not mentioned here. This further analysis will be presented when the preparation of radiopharmaceuticals using this generator is performed. The extraction fraction found in this study (about 62%) wasn't completely satisfactory, but the simple procedure, the stability of the generator and the very low 68Ge breakthrough were quite sufficient.

5. Conclusion

We studied an ionic 68Ga generator and obtained good results. The elution required only 1N-HCl and the procedure was simple. About 62% of the generator activity was eluted by a 10 ml eluate and results were reproducible. Stability of the generator was thought to be sufficient. The 68Ge breakthrough was minimal, but it increases with the increase of the elution
flow rate.

References

4) Yano, J. and Anger, H.O.: *J. Nucl. Med.*, 5, 484-487 (1964)