Non-equilibrium Nature of Conductivity Peaking of BaTiO$_3$ in Current-Time Characteristics

Mizuki Yamato, Yousuke Urakami and Yukio Watanabe
Department of Physics, University of Kyushu, Hukuoka 812-8581, Japan yamato7scp@mbox.nc.kyushu-u.ac.jp

The electrical conductivity of ideal insulators decreases monotonically towards 0 K and becomes negligible as the defects and the impurities are removed. Unlike this generally accepted behavior, we found that the quasi-equilibrium conductivity σ of undoped BaTiO$_3$ single crystal increased steeply at all three phase transitions [1,2]. To understand the mechanisms, the present paper investigates the current-time ($I(t)$) characteristics of undoped BaTiO$_3$ single crystals.

Figure 1 shows the conductivity peaking σ of an undoped BaTiO$_3$ TSSG crystal that is obtained through IV measurement. However, the possibility exists that σ in Fig.1 may still contain the effect of sorts of dielectric relaxation such as the long-term domain motion. Therefore, we have measured the long-period current-time ($I(t)$) characteristics (Fig 2): The applied voltage is kept constant (\square 50mV/mm) over hours at fixed temperatures to examine effect of the relaxation current. In Fig. 2 the polarization is a- or a/c- oriented, which exhibit only a low σ peak. σ of the ferroelectric phase that is initially higher than σ of the paraelectric phase decreases and becomes equal to the value of the paraelectric phase. This may indicate that the initially high apparent σ of the ferroelectric state is due to the dielectric relaxation or to the non-equilibrium.

To distinguish these two mechanisms, we have measured repeatedly the IV characteristics at fixed temperature for 40 h (Fig. 3).

After 15 hours, the IV characteristics of both ferroelectric and paraelectric phase start to exhibit good ohmic curves without hysteresis. σ of the ferroelectric phase decreased and became equal to σ of paraelectric phase as in the $I(t)$ measurements (σ is derived from the inclination of the IV characteristics). This observation demonstrates that the initially high σ of the ferroelectric state that is origin of the σ peaking is due to the non-equilibrium. We have still one question unresolved that is the equilibrium σ in Fig.3 is higher than that in Fig.2, which would be a clue of the origin of σ near T_C.

Fig. 1 σ-T characteristics of an undoped BaTiO$_3$ TSSG crystal obtained through IV measurement.

Fig. 2 I-t of a- or a/c- domain undoped BaTiO$_3$ TSSG crystal near the T_C.

Fig. 3 σ-t characteristics of a- or a/c-oriented undoped BaTiO$_3$ TSSG crystal near T_C. Insets: IV characteristics at $t = 15$ h.

References