Nihon Reoroji Gakkaishi
Online ISSN : 2186-4586
Print ISSN : 0387-1533
ISSN-L : 0387-1533
Original Articles
Numerical Simulation of Emergence of Textures in Flows of Liquid Crystalline Polymers using a Constitutive Model with Long-Range Elasticity
Takehiro YamamotoMichihiro Kimura
Author information
JOURNAL FREE ACCESS

2008 Volume 36 Issue 3 Pages 145-153

Details
Abstract

Simple shear and Poiseuille flows of liquid crystalline polymers between parallel plates were numerically simulated using the Marrucci-Greco model, which is a constitutive equation that includes long-range elasticity effects. Homogeneous, inhomogeneous decoupled, and inhomogeneous full coupled models [Kupferman et al., J Non-Newtonian Fluid Mech, 91, 255 (2000)] were considered in the present simulation. In the simulation of Poiseuille flows, the relation between the long-range elasticity and the emergence of textures caused by the distribution of orientation angle of directors was investigated. The molecular orientation on the channel plate restricts rotation of directors near the plate through the long-range elasticity, and irregular rotation motions of directors were observed in the inhomogeneous full coupled simulation. Full coupled computations of the velocity field and the director motion predicted the emergence of textures during flows. In addition, the simulation results suggested that a director rotation and the molecular interaction due to the long-range elasticity are necessary for the emergence of textures.

Content from these authors
© 2008 The Society of Rheology, Japan
Previous article Next article
feedback
Top