2023 Volume 51 Issue 4 Pages 211-217
In the multi-chain slip-spring, the dynamics of Rouse chains connected by virtual springs called slip-springs that hop along the chain are considered. Although this approach has been proven to reproduce entangled polymer dynamics efficiently, the settings of the artificially introduced slip-springs should be carefully examined. In this study, we discussed the effect of the slip-spring degeneracy by limiting the number of anchored slip-springs on each Rouse bead to zero and one. According to the altered slip-spring statistics, we derived the compensation potential to eliminate the artifact of slip-springs on the chain statistics. With this potential, we performed numerical simulations. The results demonstrated that although we reasonably retain the Gaussian chain statistics, the dynamics deviate from the established entangled polymer dynamics because of the significant slow-down in the chain motion induced by the correlation between different slip-springs. The observed deceleration can be explained by the fact that the movement of slip-springs can be cast into an asymmetric exclusion process.