胃癌手術における術後翌日の中立性低血圧が
術後経過に及ぼす影響*

山内康太1))# 重渡裕史1)# 鈴木裕也1) 熊谷謙一1) 小野靖裕1) 石村博史2) 海塚安郎3) 東秀史4)

要旨

目的: 本研究では胃癌に対し待機的胃切除術を施行した症例において術後1日目離床時における起立性低血圧 (orthostatic hypotension: 以下, OH)が離床経過, 合併症, 入院期間に与える影響を明らかにする ことを目的とした。【方法】2004年4月～2011年8月までに胃癌で待機的手段を施行し, 理学療法を実施 した211例を対象とし, 術後翌日のOHの有無による2群間において入院経過を比較した。【結果】離床開 始日関しては, 遊歩, 姿勢, 肺呼吸開始日ともにOH (OH positive)群が有意に遅延していた (p < 0.001)。 術後合併症に関しては, 腸瘻および呼吸器合併症の発症率に差を認めなかった。術後入院日数はOH群 25.8日，OHN (OH negative)群23.3日であり差を認めなかった。【結論】胃癌術後1日目におけるOHは 離床遅延の要因となるが術後合併症, 在院日数には差を認めなかった。

キーワード 胃癌手術, 起立性低血圧, 術後経過

緒言

開腹手術後における早期離床は術後の回復を促進する fast-track surgeryやEnhanced Recovery after Surgery (ERAS)の複合的な治療戦略において重要な構成要素 のひとつである1)～3)。早期離床は無気腫や肺炎などの術 後呼吸器合併症および術後激怒の発症率を低下させると される5)～7)。しかし, 術後早期においてしばしば認める OHは早期離床を阻害する6)～7)。我々は待機的胃切除術 を施行した症例を対象に術後1日目におけるOHの発症率および発症因子を調査した8)。OH発症率は78/211 例 (37.0%) と高率であり, OH発症因子として虚血性心疾患の既往の有無, 術後血清アルブミン値 (albumin; 以下, Alb), 術後白血球 (white blood cell; 以下, WBC), 術後平均動脈圧 (mean arterial pressure; 以下, MAP) が有意に関与していた。OHは転倒による骨折の危険因子9)としておき, 外来手術においては術後起 立不耐性症状が在院期間延長の要因となる10)。開腹手術 同の術後合併症は離床開始日が関連するとされる11) が, 周術期理学療法時のOHが術後経過, 機機能予 前に影響を与えるかは不明である。今回, 胃切除術にお いて術後1日目におけるOHが離床経過, 合併症, 入院 期間に与える影響を明らかにすることを目的とした。

対象・方法

2004年4月～2011年8月までに胃癌で全身麻酔下に て待機的手段が346例に施行され, 周術期理学療法が実 施された279例のうち術後1日目で離床が開始した 211例を対象とした。術式は開腹胃部切除術106例, 開腹胃全摘術67例, 腹腔鏡補助下胃部分切除37例, 腹 腔鏡補助下胃大曲術1例であった。除症例における離 床遅延要因は術後2日目以降の入院28例, 疼痛21例, 医学的安靖14例, 嘘詫3例, 透析2例であった。対象 者のうち術後1日目におけるOHの有無においてOHP (OH positive)群, OHN (OH negative)群の2群に分類し た (図1)。
本研究における離床はヘッドアップ座位以上と定義し、OHは臥位からヘッドアップ座位および立起など一定の離床に伴い血圧の低下を認めた場合とした。血圧の変動値は収縮期血圧20mmHg以上もしくは拡張期血圧10mmHg以上の低下とした[12]。また離床に伴い脳灌流症状である失神を含む脱気、ふらつき、倦怠感、認識機能障害、嘔気、動悸、頭痛や発汗、両腕の症状[12]を認め、緊急的に臥位姿勢を必要とし離床および離床時における血圧が測定できない場合もOHとした。

手術前の理学療法はパンフレットを用い患者教育、呼吸練習、咳痰指導などを行った。患者教育は術後呼吸器合併症予防に対する呼吸練習の目的、離床を進める手順や術期理学療法の必要性を説明した。これに十分な理解が得られるよう術前の経過と離床の経過を合わせ説明した。呼吸練習は手術当日の麻酔覚醒後から1時間毎に10回深呼吸を自由に行うよう指導し[14]、またアクティブサイクル練習法（active cycle of breathing technique：以下、ACBT）による自己排痰法の指導を行った[15]。咳痰指導は両手で術創部を覆うようにあってか、枕など抱きかかえた状態で咳痰するように指導した[16][17]。

術後における理学療法は早期離床、排痰、呼吸練習を術後1日目午後より開始されていた。離床開始基準は収縮期血圧が200mmHg以下もしくは80mmHg以上、心拍数120回/分以下、呼吸数40回/分以下、体温38.5℃以下、その他医療的な不安定性がない場合とした。離床方法は背臥位からヘッドアップ座位、床座位、立起、歩行と段階的な離床を実施した。実施中は静脈内流量増加を目的に下肢の筋ポンプ作用を得るため離床前の足間節運動や足位での足踏み、爪先立ち、左右への重心移動など適宜行った。各段階においてバイタルサインおよび自覚症状などが評価されOHを認めなければ離床を進め、循環動態が安定すれば可及的早期に運動療法室にて下肢筋力増強運動、有酸素運動（歩行練習、自転車エルゴメーター）を行った。有酸素運動は目標心拍数を安静時心拍数+20〜30回/分で5〜6回/週、退院前日まで継続した。下肢筋力増強運動、有酸素運動は低速度の運動から開始し、運動強度を漸増した。排痰に関しては患者自身による排痰が可能なACBTと体位変換法を中心に、これにより痰が気管支に移動した後、観血を保護した状態で咳痰を行い、痰を咳出させた[18][19]。また、OHなどにより離床が遅延した場合においては介入頻度を増やし呼吸練習、排痰を励行した。

術後の疼痛管理は基本的には持続胸部麻酔外鎮痛が選択されたが、抗凝固療法の必要例や穿刺が困難な症例などに関しては静脈内投与鎮痛法が行われた。硬膜外鎮痛は患者自己調節硬膜外鎮痛法（patient controlled epidural analgesia：PCEA）が実施され、疼痛の程度に合わせ補助鎮痛薬として非ステロイド性抗炎症薬が使用されていた。

調査項目は術前因子として年齢、性別、身長、体重、Body Mass Index（BMI）、併用疾患の有無（糖尿病、高血圧症、脳血管疾患、虚血性心疾患）、American Society of Anesthesiologists-physical status（以下、ASA-PS）、術前Alb、ヘモグロビン値（hemoglobin：以下、Hb）、ヘマトクリット値（hematocrit：以下、Ht）、術前平均血圧（mean arterial pressure：以下、MAP）および心拍数、術前肺機能として肺活量、1秒率、内気道として硝酸薬、β遮断薬、Ca拮抗薬、レニンアンジオテンシンII阻害薬、アンジオテンシン変換酵素阻害薬、利尿薬の使用有無とした。術中因子として術式（開腹下胃部分切除術、開腹下胃全摘術、腹腔鏡下胃部分切除術、腹腔鏡下胃全摘術）

図1 対象者フローチャート
術後、術後ならびに、術後ICU入院1日目、術後ICU入院2週目における臓器機能の評価方法は、文献を基に以下の方法を用いた。

1. 心拍数:
 - 静脈性心機能障害の有無を判断する指標として、術後ICU入院1日目での心拍数を測定し、正常範囲（60-100拍/分）を満たすものとした。
 - 静脈性心機能障害の有無を判断する指標として、術後ICU入院2週目での心拍数を測定し、正常範囲（60-100拍/分）を満たすものとした。

2. 呼吸数:
 - 呼吸数の異常は、術後ICU入院1日目での呼吸数を測定し、正常範囲（12-20回/分）を満たすものとした。
 - 呼吸数の異常は、術後ICU入院2週目の呼吸数を測定し、正常範囲（12-20回/分）を満たすものとした。

3. 血圧:
 - 血圧の異常は、術後ICU入院1日目の血圧を測定し、正常範囲（90-140/60-90 mmHg）を満たすものとした。
 - 血圧の異常は、術後ICU入院2週目の血圧を測定し、正常範囲（90-140/60-90 mmHg）を満たすものとした。

4. 心拍数と呼吸数、血圧の異常は、術後ICU入院1日目と術後ICU入院2週目のそれぞれを比較し、異常が発症した場合のみを対象とした。

5. 離床開始後1日目における臓器機能の評価方法は、術後ICU入院1日目の臓器機能の評価方法と同様の方法を用いた。

6. 離床開始後2週目における臓器機能の評価方法は、術後ICU入院2週目の臓器機能の評価方法と同様の方法を用いた。

なお、以上のように、臓器機能の評価方法は、術後ICU入院1日目と術後ICU入院2週目におけるそれぞれを比較し、異常が発症した場合のみを対象とした。
0.146～0.584）であった（表6）。Hosmer & Lemeshow検定は p=0.713であった。

考 察

開腹手術後における早期離床は術後呼吸器合併症および術後鎮静などの合併症を予防し、回復を促進するため
に重要な要素のひとつである1-5）しかしながら、術後におけるOHの発症率は17〜49%と高率であり、開腹手術後において
は離床の障害因子となる5)11)20）。しかし、離床の障害因子であるOHによる術後経過への影響について検討されてい
ない。本研究においては術後1日目における歩行開始を限界とする要因として起立性低血圧と術後Albが低値であることが
独立した因子であった。

本研究は胃癌術後症例を対象とし、術後翌日におけるOHが術後経過に及ぼす影響を検討した結果である。その結果、離床開始日はOHP群において有意
に遅延しており、OHが離床の障害因子であることが明らかとなった。上腹部手術における離床遅延要因を分析
した研究では、術後1日目における離床ができなかった要因の約6割が低血圧であったが、最大の要因であったとする
11）。術後低血圧の要因としては硬膜外鎮痛による交感神経抑制が影響するとされている11)21）。また、我々の
OHの要因分析における研究では虚血性心疾患の既往、術後Alb低下、術後WBC上昇、術後MAPが独立
した要因であった8)。この原因として術後早期では侵襲
に伴い炎症が惹起され、急性相反応として血管透過性の
亢進により高分子であるアルブミンの血管外漏出、合成
の低下が起こる。その結果、膠質浸透圧は低下し血管内
の水分は血管外へ移動し、third space lossによる前負
荷の減少のため体血圧は低下すると考えられる22)23)。
つまり炎症反応が高まると、OHに対するリスクは高
く、離床の障害要因となることが示唆される。

今後、術後合併症に対する影響として諸症および呼吸
器合併症を考慮した。本研究における合併症発症率は諸
症9.5%、呼吸器合併症1.9%であった。概ね比較する
ことはできないが上腹部手術を対象とした先行研究では

表1 起立性低血圧有無における患者特性：術前因子

<table>
<thead>
<tr>
<th></th>
<th>OH Negative (n=133)</th>
<th>OH Positive (n=78)</th>
<th>p 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢（歳）</td>
<td>70.0 ± 96</td>
<td>68.8 ± 92</td>
<td>0.391</td>
</tr>
<tr>
<td>性別（男:女）</td>
<td>89:44</td>
<td>58:20</td>
<td>0.256</td>
</tr>
<tr>
<td>身長（m）</td>
<td>1.60 ± 08</td>
<td>1.60 ± 09</td>
<td>0.647</td>
</tr>
<tr>
<td>体重（kg）</td>
<td>55.9 ± 10.4</td>
<td>57.6 ± 11.2</td>
<td>0.246</td>
</tr>
<tr>
<td>BMI（kg/m²）</td>
<td>21.9 ± 3.3</td>
<td>22.4 ± 3.3</td>
<td>0.288</td>
</tr>
</tbody>
</table>

注：平均±標準偏差、中央値（四分位範囲）、n(％)

BML: body mass index; ASA-PS: American Society of Anesthesiologists-physical status; ARB: angiotensin II receptor blocker; ACE: angiotensin-converting enzyme.
表2 起立性低血圧有無における患者特性：術中因子

<table>
<thead>
<tr>
<th>術式</th>
<th>OH Negative (n=133)</th>
<th>OH Positive (n=78)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>開腹下胃切除術</td>
<td>72 (54.1%)</td>
<td>34 (43.6%)</td>
<td>0.007</td>
</tr>
<tr>
<td>開腹下胃全摘術</td>
<td>12 (92.4%)</td>
<td>10 (10.7%)</td>
<td>—</td>
</tr>
<tr>
<td>腹腔鏡補助下胃切除術</td>
<td>28 (21.1%)</td>
<td>9 (11.5%)</td>
<td>—</td>
</tr>
<tr>
<td>腹腔鏡補助下胃全摘術</td>
<td>1 (0.7%)</td>
<td>0 (0%)</td>
<td>—</td>
</tr>
<tr>
<td>手術時間（分）</td>
<td>210.6 ± 65.2</td>
<td>224.3 ± 67.0</td>
<td>0.147</td>
</tr>
<tr>
<td>麻酔時間（分）</td>
<td>292.6 ± 72.0</td>
<td>307.4 ± 78.9</td>
<td>0.165</td>
</tr>
<tr>
<td>術中出血压量（ml）</td>
<td>278.3 ± 326.4</td>
<td>367.0 ± 329.8</td>
<td>0.116</td>
</tr>
<tr>
<td>術中輸液量（ml/kg/h）</td>
<td>10.10 ± 3.05</td>
<td>10.84 ± 3.06</td>
<td>0.091</td>
</tr>
<tr>
<td>術中尿量（ml/kg/h）</td>
<td>1.91 ± 1.63</td>
<td>1.87 ± 1.32</td>
<td>0.855</td>
</tr>
<tr>
<td>術後輸液量（ml/kg/h）</td>
<td>1.81 ± 0.59</td>
<td>1.79 ± 0.57</td>
<td>0.809</td>
</tr>
<tr>
<td>術後尿量（ml/kg/h）</td>
<td>1.63 ± 0.81</td>
<td>1.57 ± 0.68</td>
<td>0.590</td>
</tr>
<tr>
<td>術後排液量（ml）</td>
<td>206.5 ± 189.8</td>
<td>264.1 ± 254.9</td>
<td>0.063</td>
</tr>
<tr>
<td>水分バランス（ml）</td>
<td>1749.2 ± 886.8</td>
<td>2089.4 ± 901.7</td>
<td>0.008</td>
</tr>
<tr>
<td>白血球数（10^9/μl）</td>
<td>106.4 ± 31.5</td>
<td>119.5 ± 41.2</td>
<td>0.010</td>
</tr>
<tr>
<td>血清アルプミン値（g/dl）</td>
<td>2.9 ± 0.5</td>
<td>2.7 ± 0.4</td>
<td>0.001</td>
</tr>
<tr>
<td>ヘモグロビン値（g/dl）</td>
<td>11.4 ± 1.7</td>
<td>11.3 ± 1.2</td>
<td>0.789</td>
</tr>
<tr>
<td>ヘマトクリット (%)</td>
<td>35.0 ± 4.5</td>
<td>35.1 ± 3.6</td>
<td>0.844</td>
</tr>
<tr>
<td>最高体温（℃）</td>
<td>37.2 ± 0.6</td>
<td>37.4 ± 0.7</td>
<td>0.054</td>
</tr>
<tr>
<td>平均血圧（mmHg）</td>
<td>88.8 ± 14.2</td>
<td>81.5 ± 14.3</td>
<td>0.001</td>
</tr>
<tr>
<td>心拍数（拍/分）</td>
<td>75.5 ± 12.2</td>
<td>77.7 ± 12.5</td>
<td>0.204</td>
</tr>
<tr>
<td>術後観察</td>
<td>123 (62.4%)</td>
<td>73 (69.6%)</td>
<td></td>
</tr>
<tr>
<td>持続後腹内障</td>
<td>5 (3.8%)</td>
<td>3 (3.8%)</td>
<td>0.896</td>
</tr>
<tr>
<td>無</td>
<td>5 (3.8%)</td>
<td>22 (6.2%)</td>
<td></td>
</tr>
</tbody>
</table>

平均 ± 準備偏差。 n(%)。
※術後1日目午前6時間までの水分バランス

表3 術後経過

<table>
<thead>
<tr>
<th>術後観察</th>
<th>OH Negative (n=133)</th>
<th>OH Positive (n=78)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>離床経過（日）</td>
<td>1.07 ± 0.25</td>
<td>1.27 ± 0.45</td>
<td>< 0.001</td>
</tr>
<tr>
<td>座位</td>
<td>1.19 ± 0.39</td>
<td>1.60 ± 0.69</td>
<td>< 0.001</td>
</tr>
<tr>
<td>起立</td>
<td>1.55 ± 0.66</td>
<td>2.37 ± 0.99</td>
<td>< 0.001</td>
</tr>
<tr>
<td>歩行</td>
<td>14 (10.5%)</td>
<td>6 (7.7%)</td>
<td>0.498</td>
</tr>
<tr>
<td>術後合併症 n (%)</td>
<td>2 (1.5%)</td>
<td>2 (2.6%)</td>
<td>0.472</td>
</tr>
</tbody>
</table>

平均 ± 準備偏差。 n(%)。

術後観察は12〜35%（24〜27）呼吸器合併症は18.6〜58.3%（41〜11）であり、本研究の発症率は低値であった。この要因として対象疾患や術式などの患者特性の差異や評価方法などの違いが考えられる。本研究ではこれらの合併症予防としてもっとも高い効果が証明されている早期離床（5〜11）を実施していたことが合併症発症率の低値につながったと推察される。しかし本研究ではOHP群は有意に離床が遅延していたが、合併症に関しては2群間に差を認めなかった。早期離床を有効とする先行研究では対照群は術後3日以内に離床を開始しており（4）、本研究では離床開始日に差を認めものの、2群間に差は0.8日であり差は小さい。しかし、Olsénら（29）の報告では早期離床を中心とした理学療法介入では歩行開始日は介入群1.4 ± 0.7日、对照群1.8 ± 2.8日と有意差を

NII-Electronic Library Service
表4 術後1日目における歩行開始有無：術前因子

<table>
<thead>
<tr>
<th>因子</th>
<th>歩行実施群 (n=81)</th>
<th>歩行非実施群 (n=130)</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢（歳）</td>
<td>69.4±9.7</td>
<td>69.6±9.3</td>
<td>0.863</td>
</tr>
<tr>
<td>性別（男：女）</td>
<td>58:23</td>
<td>89:41</td>
<td>0.048</td>
</tr>
<tr>
<td>身長（m）</td>
<td>1.60±0.09</td>
<td>1.59±0.08</td>
<td>0.586</td>
</tr>
<tr>
<td>体重（kg）</td>
<td>57.1±10.4</td>
<td>56.2±11.0</td>
<td>0.536</td>
</tr>
<tr>
<td>BMI（kg/m²）</td>
<td>22.2±3.0</td>
<td>22.0±3.5</td>
<td>0.694</td>
</tr>
</tbody>
</table>

平均±標準偏差、中央値（四分位範囲）、n(%)
BMI, body mass index; ASA-PS, American Society of Anesthesiologists-physical status; ARB, angiotensin II receptor blocker; ACE, angiotensin-converting enzyme.

認めた。呼吸器合併症の発症率に差を認めた。この研究ではハイリスク症例では呼吸練習を追加しており、離床開始目差異の有無が離床開始目はわずかでは臨床的には大きな意味があることを示唆する。本研究においては、離床が遅延した症例は合併症の高リスクとして分類し呼吸・排痰練習を追加したことが合併症発症率に差を認めなかった要因と考えられる。つまりOH症例では適切なポジシオニングの勧告や評価に基づき気道クリアランスが必要な場合は積極的な呼吸練習、排痰練習が重要となる。また合併症のハイリスク症例やOHが持続する症例においては介人頻度の増加や弾性帯などによる理学的処置を検討する必要がある。

身体機能の影響については、本研究では術後2週目における6分間歩行距離の術前値に対する回復率にて比較した。その結果、OHP群88%、PHN群90%であり2群間に差を認めなかった。開腹手術後における6分間歩行距離についての検討は少ない。末期の大腸癌手術症例を対象とした研究（30）では、6分間歩行距離回復率は術後3週目で90%であり、一概に比較できないが同等である。またこの研究では、術後合併症が6分間歩行距離の回復に影響すると示している31）。腹部大動脈瘤開腹手術後の間が我々の研究では、術後2週目における6分間歩行距離回復率に影響を及ぼす因子を検討した結果、歩行開始目は抽出されず、年齢と体重減少が独立した関連因子として抽出された31）。つまり、術後身体機能の回復には術後翌日におけるOHは関連が少ないと、高齢者の体力、骨格筋力低下、初日活動性、歩行速度、身体活動量、認知・精神機能などの総合的な低下を示す虚弱（Frailty）32）と手術侵襲に伴う高齢期症を呈する異化での筋蛋白の分解33）および臥床1）による骨格筋量減少、経日摂取制限による体内外の水分量減少34）の関連性が示唆される。また、これらのFrailtyや異化反応は開腹手術後の合併症を増加させ、在院日数を増加の要因となる18.41.32.33）。しかし、本研究では2群間に術前全身状態に差のあるものの、術前生理学療法により術後合併症に関してはOHP群に増加を認めなかったことから、術後翌日におけるOHは在院日数に影響を及ぼさなかったと考えられる。
表5 術後1日目における歩行開始有無：術中因子

<table>
<thead>
<tr>
<th>術式</th>
<th>歩行開始群 (n=81)</th>
<th>歩行非開始群 (n=130)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>開腹下胃切除術</td>
<td>38 (46.9%)</td>
<td>68 (52.3%)</td>
<td>0.001</td>
</tr>
<tr>
<td>開腹下胃全摘術</td>
<td>19 (23.5%)</td>
<td>48 (36.9%)</td>
<td></td>
</tr>
<tr>
<td>腹腔鏡補助下胃切除術</td>
<td>24 (29.0%)</td>
<td>13 (10.0%)</td>
<td></td>
</tr>
<tr>
<td>腹腔鏡補助下胃全摘術</td>
<td>0 (0%)</td>
<td>1 (0.8%)</td>
<td></td>
</tr>
<tr>
<td>手術時間 (分)</td>
<td>204.1 ± 58.0</td>
<td>222.9 ± 69.8</td>
<td>0.044</td>
</tr>
<tr>
<td>麻酔時間 (分)</td>
<td>284.2 ± 65.3</td>
<td>306.7 ± 79.2</td>
<td>0.034</td>
</tr>
<tr>
<td>手術中出血量 (ml)</td>
<td>253.8 ± 488.8</td>
<td>346.8 ± 320.1</td>
<td>0.097</td>
</tr>
<tr>
<td>手術中輸液量 (ml/kg/h)</td>
<td>9.84 ± 2.70</td>
<td>10.71 ± 3.25</td>
<td>0.044</td>
</tr>
<tr>
<td>手術中尿量 (ml/kg/h)</td>
<td>1.62 ± 1.37</td>
<td>2.07 ± 1.58</td>
<td>0.032</td>
</tr>
<tr>
<td>手術後輸液量 (ml/kg/h)</td>
<td>1.76 ± 0.49</td>
<td>1.82 ± 0.62</td>
<td>0.453</td>
</tr>
<tr>
<td>手術後尿量 (ml/kg/h)</td>
<td>1.63 ± 0.80</td>
<td>1.59 ± 0.75</td>
<td>0.724</td>
</tr>
<tr>
<td>手術時排液量 (ml)</td>
<td>199.8 ± 185.5</td>
<td>245.2 ± 234.1</td>
<td>0.141</td>
</tr>
<tr>
<td>水分バランス (ml)*</td>
<td>1749.3 ± 899.1</td>
<td>1953.3 ± 903.7</td>
<td>0.112</td>
</tr>
<tr>
<td>白血球数 (10^9/μl)</td>
<td>106.1 ± 31.2</td>
<td>114.5 ± 38.3</td>
<td>0.097</td>
</tr>
<tr>
<td>血清アルブミン値 (g/dl)</td>
<td>3.1 ± 0.5</td>
<td>2.7 ± 0.5</td>
<td><0.001</td>
</tr>
<tr>
<td>ヘモグロビン値 (g/dl)</td>
<td>11.5 ± 1.5</td>
<td>11.3 ± 1.5</td>
<td>0.281</td>
</tr>
<tr>
<td>ヘマトクリット (%)</td>
<td>35.5 ± 4.1</td>
<td>34.7 ± 4.3</td>
<td>0.181</td>
</tr>
<tr>
<td>最高体温 (℃)</td>
<td>37.2 ± 0.7</td>
<td>37.3 ± 0.6</td>
<td>0.498</td>
</tr>
<tr>
<td>平均血圧 (mmHg)</td>
<td>87.6 ± 14.9</td>
<td>85.2 ± 14.5</td>
<td>0.256</td>
</tr>
<tr>
<td>心拍数 (1分/分)</td>
<td>75.1 ± 10.7</td>
<td>77.1 ± 13.2</td>
<td>0.267</td>
</tr>
<tr>
<td>術後鎮痛</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>持続硬膜外鎮痛</td>
<td>74 (91.4%)</td>
<td>122 (93.8%)</td>
<td></td>
</tr>
<tr>
<td>持続静脈内鎮痛</td>
<td>4 (4.9%)</td>
<td>4 (3.1%)</td>
<td>0.771</td>
</tr>
<tr>
<td>無</td>
<td>3 (3.7%)</td>
<td>4 (3.1%)</td>
<td></td>
</tr>
<tr>
<td>起立性低血圧</td>
<td>10 (12.3%)</td>
<td>68 (62.3%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

平均±標準偏差, n(%)。
※術後1日目午前6時までの水分バランス

表6 術後1日目歩行開始の関連因子

<table>
<thead>
<tr>
<th>変数</th>
<th>β</th>
<th>OR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>起立性低血圧</td>
<td>1.860</td>
<td>6.423 (2.955-13.772)</td>
<td><0.001</td>
</tr>
<tr>
<td>術後アルブミン値</td>
<td>-1.232</td>
<td>0.292 (0.146-0.584)</td>
<td><0.001</td>
</tr>
<tr>
<td>定数</td>
<td>0.349</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hosmer-Lemeshow, goodness-of-fit $χ^2 = 4.355$, p = 0.824.
β, 係数; OR, 奇異比; CI, 信頼区間.

本研究の限界として調査期間中は同一のクリニックコアを用いた周術期管理、同一理学療法チームによる理学療法介入が行われていたが、長期間にわたる調査であり周術期管理における変化による影響は否めない。またOHの有無における群間比較のの検討であり、多変量解析による要因検討していない点が挙げられる。しかしながら、開腹術後における離床遅延の要因分析に関しては低血圧が主要因であると示した報告1)は存在するが、術後合併症や在院日数の要因分析に術後OHを関連因子として検討されていない2)4)11)32)33)。本研究はOHが術後身体機能、合併症および在院日数に及ぼす影響は少ないことを示唆したにすぎず、その後の研究であって意義は高い。

身体機能は、6分間歩行距離を測定した症例は全対象の53%（112/211例）であり、すべての対象を測定していない点も制限となる。しかし、測定した症例は112例の割合はOH群50%（39/78例）、OH群55%（73/133例）であり、2群間に差を認めないことから、母集団を反映しているものと推測される。さらに本研究で
は疼痛、嘔気、医学的安静により遅延した症例を除外しており、これらの症例は術後の離床は遅延し、呼吸器合併症のリスクは高いことが推測される。

評価方法に関しては脳萎の抽出に標準的な評価とされConfusion Assessment Method for the ICU (CAM-ICU) 34や Richmond Agitation-Sedation Scale (RASS) 35を使用しておらず、低活動型脳萎を抽出できていないことが限界として挙げられる。

今後は除外した症例を含めた術後身体機能の回復推移や術後合併症、在院日数に関連する因子の分析を行う必要がある。

結 論

今回、胃癌術後1日目のにおけるOHが術後経過に及ぼす影響を調査し、離床遅延の要因となるものの、術後合併症、身体機能の回復率、在院日数には差を認めなかった。

本稿のすべての著者には規定された利益相反（conflict of interest）はない。また本稿の要旨は、第48回日本理学療法学術大会（2013年、名古屋）にて発表した。

文 献

5) 山内農太、石村博史、他：上部開腹手術における術後脳萎抑制に対する穏外胸れた理療療法の有効性。日本集中医誌。2011; 18: 599–605.
8) 山内農太、石村博史、他：胃癌手術後における起立性低血圧の予防因子。日集中医誌。2013; 20: 387–394.
29) Olssen MF, Hahn I, et al.: Randomized controlled trial of
Impact on Orthostatic Hypotension the Day after Gastric Cancer Surgery on the Hospital Course

Kouta YAMAUCHI, PT, Hirofumi SHIMAZOE, PT, Yuya SUZUKI, PT, Kenichi KUMAGAE, PT, Yasuhiro KOYANAGI, PT
Department of Rehabilitation, Steel Memorial Yawata Hospital

Hiroshi ISHIMURA, MD
Department of Vascular Center, Steel Memorial Yawata Hospital

Yasu KAIZUKA, MD
Department of Intensive Care unit and Emergency, Steel Memorial Yawata Hospital

Hidefumi HIGASHI, MD
Department of Surgery, Steel Memorial Yawata Hospital

Purpose: A key element in enhanced postoperative recovery is early mobilization. However, this may be hindered by orthostatic hypotension (OH). The purpose of the present study was to assess the impact of OH the day after gastric cancer surgery to the postoperative course.

Methods: A total of 211 patients who underwent elective gastrectomy for gastric cancer with perioperative physiotherapy were examined between 2004 and 2011. The subjects were compared in terms of their hospital course based on presence and absence of OH the day after surgery.

Results: The time to achieve a sitting position, standing up and walking in the OH-positive group was significantly delayed compared to the OH-negative group. There were no significant differences in the postoperative complications and length of hospital stay between the patients with and without postoperative OH.

Conclusion: OH on the first day after gastric cancer surgery leads to a delay in mobilization, but the incidence of postoperative complications and length of hospital stay were not significantly different between patients with and without postoperative OH.