症例研究

慢性心不全患者の理学療法士主導による在宅型運動管理の効果*

高瀬 彰詩 1) 2)# 松尾 善美 2) # 松澤 幸夫 3) 東根 孝次 1) 小田 実 1) 眞鍋 誠 1) 嶋田 悦尚 1) 小倉 理代 1) 高橋 健文 1) 日浅 芳一 1)

要旨

【目的】入院治療を要した慢性心不全患者の退院後早期における在宅型運動管理の効果を検証すること。

【方法】当院に慢性心不全の診断名で入院した35名を介入群(17名)と対照群(18名)に無作為に割りつけた。

介入群は退院後3ヶ月間身体活動量計を装着し、理学療法士が週1回電話で歩数と心不全兆候を確認した。

また、患者毎に定めた目標歩数まで段階的に増加させるSTEP表を作成し、目標の達成状況に応じて歩数を増加させた。

退院時および退院後1ヶ月、3ヶ月時点で6分間步行距離、5m步行速度、健康関連QOL(SF-36)を評価した。

【結果】登録適格となった患者の80%が研究に参加し、介入群の71%が本プログラムを完了した。

介入群では6分間步行距離、5m歩行速度および健康関連QOL有意に改善した。なお、有意事象は発生しなかった。

【結論】退院後早期の慢性心不全患者に対する理学療法士主導の在宅型運動管理は、有効な管理方法である。

キーワード 慢性心不全、在宅型運動管理、心臓リハビリテーション

はじめに

慢性心不全は75歳以上の高齢者に多発する疾患であり、近年急激に高齢化が進む我が国において急増している。さらに、J-CARE-CARD研究1）によりると日本における心不全患者の退院後1年以内の再入院率は26%と高率であり、これが家族や診療士の負担を増加しているだけでなく、医療費の増大においても大きな問題となっている。

この再入院の多くは、水分・塩分制限の不徹底や服薬コンプライアンス不良などの心外因子であることが明らかにされており2)。

心不全の管理は、医師・看護師・薬剤師・栄養士などの多職種が退院後もフォローアップを継続する疾病管理プログラムの有効性が多数報告されている3-6)。

一方で、運動療法も心不全患者の運動耐容能やQOLを改善し、再入院率や死亡率を減少させることが明らかとなっている7-13)。しかし、両者を組み合わせたプログラムの報告は少ない14,15)。この理由のひとつとして、退院後心臓リハビリテーション（以下、心リハ）の参加率が低いことが挙げられる。Davidsonら16)は、退院後12週間まで週1回の監視下運動療法を行うプログラムを実施したところ、取りこめ基準に該当した患者445名のうち341名に研究参加の同意を得られなかったとしており、その理由の多くは退院困難であったと報告している。

従来の心リハは、このような病院における監視下運動療法を主体としており、患者に対する時間的・経済的負担が大きい。

そこで、これらの負担を軽減した在宅ベースの非監視下運動療法が有効かつ良好なアプローチを保証することが報告されている16-25)。

Efficacy of a Home-based Exercise Program for Recently Hospitalized Heart Failure Patients

1) 北島幸子敬石

2) 武雄川女子大学

3) 德島大学医学部

E-mail: mk_kousai@yahoo.co.jp

(受付日 2014年4月4日／受理日 2014年10月17日)
証し、従来の疾病管理プログラムに加え得る運動管理方法を提唱することを目的とした。

方 法

1. 対象

対象は2013年1～9月までの期間に徳島赤十字病院に慢性心不全の急性増悪もしくは急性心不全の診断で入院し、入院中に心リハを受けた患者とした。除外基準は認知症あるいはその疑いのあるもの（Mini-Mental State Examination：以下，MMSE＜26）、日常生活管理が可能で歩行が可能であるもの、当院から直接自宅退院しないものの、他疾患の治療が優先されるもの、本研究に同意が得られなかったものとした。

なお、本研究は徳島赤十字病院倫理委員会医療審議部会の承認を得て実施した。本研究に際し、事前に患者に研究の趣旨と内容および調査結果の取り扱い等に関して文書による説明を行い同意を得た。

2. 研究デザイン

研究デザインは、一施設における前向き無作為化比較試験（以下，RCT）とした。割りつけは置換ブロック法を用いて1:1の割合で介入群と対照群に割りつけていた。

対象者には退院時の評価後にどちらの群であるかを開示し、入院の介入および研究への参加に影響を及ぼさないようにした。

3. 介入方法

入院中の両群ともに医師・看護師・理学療法士・管理栄養士・薬剤師からそれぞれ退院後の指導を受けた。また、退院後は慢性心不全管理手帳に血圧、脈拍、体重の記入および症状と服薬のチェックを毎日行うように指導した。

対照群には、入院中に理学療法士が日本循環器学会のガイドラインに基づいて退院後の運動指導を行い、退院後は当院もしくはかかりつけ医にて医師による診察のみのフォローアップを行った。心不全症状（1週間で2kg以上の体重増加、下腿浮腫の出現、同一負荷の下における自覚の運動強度の増悪）が出現した際には一旦運動を中止し、主治医に相談するよう指導した。受診頻度は患者每日医師が決定したが、退院後1ヵ月と3ヵ月時点で当院外来で医師による診療を行った。

介入群には、理学療法士が身体活動量計（OMRON, Active style Pro HJA-350FT）と電話を用いて退院後3ヵ月間の運動管理プログラムを実施した。この身体活動量計は3軸加速度センサが内蔵されており、歩数以外に歩行時や生活活動時のMETsが計測可能であり、150

<table>
<thead>
<tr>
<th>STEP</th>
<th>目標 week</th>
<th>目標歩数</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>日常生活のみ（ベースライン）</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>ベースライン+10分間分の歩数 週5日</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>ベースライン+20分間分の歩数 週5日</td>
</tr>
<tr>
<td>IV</td>
<td>4</td>
<td>ベースライン+30分間分の歩数 週5日</td>
</tr>
</tbody>
</table>

日間内蔵メモリに記録される。はじめに、運動量の設定として日本循環器学会が定めるガイドラインの運動処方に基づいて歩数を段階的に増加していくためのSTEP表（表1）を作成した。まず、入院中に身体活動量計を装着し、患者毎に至適歩行速度（Borg指数11～13）で10分間歩行した際の歩数とMETsを計測した。次に、退院後1週間は特別な運動を行わないよう指導し、日生活のみの歩数を計測した。

退院後8日目の電話連絡後、退院後7日間の歩数を聞き取り、1日の平均歩数をベースラインとした（STEP I）。8日目からはベースラインに患者の10分間の歩数を足した値を目標値とし、週5日以上をその目標値に到達するよう指導した（STEP II）。以後、1週間毎に電話で歩数と心不全症状の有無を確認するとともに、目標値をSTEP表にしたがって増加し、ベースラインに30分間の歩数を足した値を最終目標とした（STEP IV）。ただし、退院2週間後と1ヵ月後には活動中のMETsを病院で患者とともに確認し、適切な負荷で運動が行っているかどうかをフィードバックした。また、a）目標値に達している日数が1週間の内3日以内、b）患者から疲労の訴えがある、c）体重増加や食事などの心不全症状がある、のいずれかに該当する場合は目標値を期間短く、あるいは下げるよう指導した。STEP IVに到達するまで最長8週間はフォローアップを継続し、それでも到達できなかった場合はその時点のSTEPで運動を継続するよう指導した。なお、退院後3ヵ月間は患者から理学療法士に対して常時連絡が取れるようにした。

4. 評価方法

評価項目は6分間歩行距離（6-minute walk distance：以下，6MWD）、5m歩行速度、健康関連QOL（MOS 36-item Short-Form Health Survey：以下，SF-36）とし、退院時（以下，E0）および退院後1ヵ月（以下，E1）・3ヵ月（以下，E3）時点で測定した。6MWD、5m歩行速度の測定は、研究者から測定方法の説明を受け、測定の練習を行ったものが実施した。なお、評価者を無偏化しなかった。また、退院後3ヵ月以内に心不全

NII-Electronic Library Service
増悪による再入院があった場合は介入を中止し、その後の評価は行わなかった。

1) 6MWD
20 mの直線コースを用意し、6分間で可能な限り長い距離を歩くよう指示した。また、測定者は試験中1分毎に時間をカウントし、それ以外の声掛けは行わなかった。その他の実施手順は米国胸部医学会のプロトコル28に準じた。

2) 5 m歩行速度
まず、周囲に障害物がない場所に5 mの直線距離を用意し、0 mと5 m地点にテープで印をつけた。患者は0 m地点のテープのすぐ後方に立ち、至適歩行速度で5 m地点のテープの2～3 m後方まで歩くよう指示した。必要に応じて歩行補助具の使用を許可したが、各測定時期で異なるようにした。一歩目の着地時点から、5 m地点を超えてはじめて着地した時点までの時間を計測した。測定は3回行い、その平均値を解析値とした。

3) 健康関連QOL（SF-36）
健康関連QOLの評価にはSF-3629-31を使用した。健康関連QOLの尺度は包括的なものと疾患特異的なものに大別されるが、SF-36は前者に含まれる。SF-36は身体機能（physical functioning：以下、PF）、日常生活機能一身体（role-physical：以下、RP）、体の痛み（bodily pain：以下、BP）、全体的健康感（general health：以下、GH）、活力（vitality：以下、VT）、社会生活機能（social functioning：以下、SF）、日常生活機能一精神（role-emotional：以下、RE）、心の健康（mental health：以下、MH）の8つの下位尺度と、身体的側面（Physical component summary：以下、PCS）、精神的側面（Mental component summary：以下、MCS）、役割一社会的側面（Role/Social component summary：以下、RCS）の3つのサマリースコアが算出できる。6MWDおよび5 m歩行速度の変化量の群間比較に当たるのt検定とMann-WhitneyのU検定、Fisherの正確確率検定を用いた。6MWDおよび5 m歩行速度の変化量の群間比較には当たるのt検定とMann-WhitneyのU検定を用いた。健康関連QOLの各項目においては、繰り返しのある一元配置分散分析もしくはFriedman検定を行った。また、有意差がある場合はpost-hoc比較としてShaffer法による多重比較を行った。分析にはRを使用し、有意水準は5%未満とした。

結果
1. 対象者の流れ（図1）
187名の患者が取組基準に該当し、その内152名が除外基準に該当した。よって、対象は35名（介入群17名、対照群18名）となった。除外理由は「屋外自立歩行困難」がもっとも多く、次いで「転院」、「認知機能
表2 介入前における対象者の集団比較

<table>
<thead>
<tr>
<th></th>
<th>介入群 (n = 17)</th>
<th>対照群 (n = 18)</th>
<th>p 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢</td>
<td>70.2 ± 11.6</td>
<td>68.7 ± 11.0</td>
<td>0.71</td>
</tr>
<tr>
<td>性別（男/女）</td>
<td>12/5</td>
<td>12/6</td>
<td>0.80</td>
</tr>
<tr>
<td>基礎疾患 n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>虚血性</td>
<td>6 (35)</td>
<td>7 (39)</td>
<td></td>
</tr>
<tr>
<td>戦場症</td>
<td>3 (18)</td>
<td>5 (28)</td>
<td></td>
</tr>
<tr>
<td>高血圧</td>
<td>1 (6)</td>
<td>4 (22)</td>
<td>0.26</td>
</tr>
<tr>
<td>心筋症</td>
<td>6 (35)</td>
<td>2 (11)</td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>1 (6)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>合併症 n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高血圧</td>
<td>11 (65)</td>
<td>13 (72)</td>
<td>0.63</td>
</tr>
<tr>
<td>糖尿病</td>
<td>5 (29)</td>
<td>5 (28)</td>
<td>0.91</td>
</tr>
<tr>
<td>脂質異常症</td>
<td>3 (18)</td>
<td>6 (33)</td>
<td>0.44</td>
</tr>
<tr>
<td>慢性腎機能障害 (eGFR ≤ 60)</td>
<td>12 (71)</td>
<td>13 (72)</td>
<td>0.91</td>
</tr>
<tr>
<td>心房細動</td>
<td>5 (29)</td>
<td>8 (44)</td>
<td>0.59</td>
</tr>
<tr>
<td>貧血</td>
<td>9 (53)</td>
<td>8 (44)</td>
<td>0.62</td>
</tr>
<tr>
<td>NYHA II / III n (%)</td>
<td>6 (35) / 11 (65)</td>
<td>8 (44) / 10 (55)</td>
<td>0.58</td>
</tr>
<tr>
<td>正常値出率 (%)</td>
<td>38.2 ± 20.0</td>
<td>37.4 ± 14.3</td>
<td>0.70</td>
</tr>
<tr>
<td>心不全入院歴 有/無 n (%)</td>
<td>7 (41) / 10 (59)</td>
<td>5 (28) / 13 (72)</td>
<td>0.40</td>
</tr>
<tr>
<td>運動機能</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6分間歩行距離</td>
<td>306.2 ± 100.4</td>
<td>349.0 ± 88.8</td>
<td>0.19</td>
</tr>
<tr>
<td>5m歩行速度</td>
<td>6.1 ± 1.8</td>
<td>5.4 ± 1.4</td>
<td>0.18</td>
</tr>
<tr>
<td>SF-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PF</td>
<td>25.1 ± 16.3</td>
<td>28.6 ± 18.8</td>
<td>0.57</td>
</tr>
<tr>
<td>RP</td>
<td>15.8 (26−32.5)</td>
<td>12.5 (6.7−31.6)</td>
<td>0.99</td>
</tr>
<tr>
<td>BP</td>
<td>44.7 (40.3−61.7)</td>
<td>49.7 (41.3−61.7)</td>
<td>0.49</td>
</tr>
<tr>
<td>GH</td>
<td>41.0 ± 8.0</td>
<td>35.8 ± 10.5</td>
<td>0.11</td>
</tr>
<tr>
<td>VT</td>
<td>38.9 ± 9.2</td>
<td>41.8 ± 11.8</td>
<td>0.42</td>
</tr>
<tr>
<td>SF</td>
<td>37.7 (31.2−50.6)</td>
<td>40.9 (31.2−57.0)</td>
<td>0.31</td>
</tr>
<tr>
<td>RE</td>
<td>31.1 (6.1−51.9)</td>
<td>37.3 (18.6−47.7)</td>
<td>0.65</td>
</tr>
<tr>
<td>MH</td>
<td>43.8 (35.7−51.8)</td>
<td>49.1 (33.7−54.5)</td>
<td>0.95</td>
</tr>
<tr>
<td>PCS</td>
<td>31.5 ± 13.4</td>
<td>30.5 ± 15.4</td>
<td>0.84</td>
</tr>
<tr>
<td>MCS</td>
<td>53.9 ± 10.5</td>
<td>52.9 ± 10.2</td>
<td>0.77</td>
</tr>
<tr>
<td>RCS</td>
<td>28.9 ± 21.2</td>
<td>34.1 ± 18.1</td>
<td>0.44</td>
</tr>
</tbody>
</table>

正常分布データ：平均±標準偏差
非正常分布データ：中央値（25 ~ 75％）
3. 安全性・アドヒアランス
すべての症例において、運動中の有害事象は発生しなかった。退院後3ヶ月間の心不全増悪を原因とする再入院は介入群18％（3名）、対照群22％（4名）であった。また、死亡した者はいなかった。心不全増悪の要因は、塩分・水分過剰摂取が4名（介入群1名、対照群3名）、病態の進行が2名（介入群2名、対照群0名）、感染症が1名（介入群0名、対照群1名）であった。

再入院しなかった14名のE3時点におけるSTEPは、STEP IV：11名（79%），STEP III：1名（7%），STEP II：0名（0%），STEP I：0名（0%）であり、その2名は途中で活動量計の装置を自ら中止した。したがって、介入群17名のうち3ヶ月時点プログラムを完遂できた患者は12名（71%）であった。この12名の歩数とSTEPの推移を表4に示す。1名は理学療法士の指導を守れず1週目から30分以上の運動を開始したため、1週目からSTEP IV達成とした。なお、入院中に計測した12名の10分間の平均歩数は986.3±194.2歩であった。

4. 身体機能
6MWDおよび5m歩行速度の変化量を表5に示す。6MWDの変化量はE0～E1およびE0～E3のいずれの期間においても対照群と比較して介入群のほうが有意に大きかった（E0-E1 p = 0.02, E0-E3 p < 0.01）。また，5m歩行速度の変化量についてはE0～E3の期間のみ両群間に有意差を認めた（p = 0.04）。

<table>
<thead>
<tr>
<th>表3 投薬内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>投薬名</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>アスピリン</td>
</tr>
<tr>
<td>ACE阻害薬</td>
</tr>
<tr>
<td>ARB</td>
</tr>
<tr>
<td>β-ブロッカー</td>
</tr>
<tr>
<td>スタチン</td>
</tr>
<tr>
<td>スピロノラクトン</td>
</tr>
<tr>
<td>アミオタドロン</td>
</tr>
<tr>
<td>ワーフィリン</td>
</tr>
<tr>
<td>フロセミド</td>
</tr>
</tbody>
</table>

ACE: angiotensin-converting enzyme, ARB: angiotensin receptor blocking.

<table>
<thead>
<tr>
<th>表4 1日の平均歩数とSTEP IV到達の推移</th>
</tr>
</thead>
<tbody>
<tr>
<td>1週目</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>平均歩数</td>
</tr>
<tr>
<td>STEP IV到達人数（n）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表5 6分間歩行距離と5m歩行速度の変化量</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>6MWD</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

正規分布データ：平均値±標準偏差
非正規分布データ：中央値（25～75%）
6MWD: 6-minute walk distance, E0: 退院時, E1: 退院後1ヵ月, E3: 退院後3ヵ月
5. SF-36

両群のE0、E1、E3における下位尺度8項目の得点およびサマリースコアを表6に示す。介入群はPF、RP、VT、SF、PCS、RCSの項目が有意に改善したのに対し、对照群はいずれの項目においても有意差を認めなかった。

考察

本研究は、理学療法士主導の在宅型運動管理プログラムを退院後早期の慢性心不全患者を行い、その効果をRCTで検証したものである。

1. 本プログラムの特徴

本プログラムの特徴は、従来の外来心リハプログラムに比べて通院の負担を軽減し、患者が参加および継続しやすいプログラムにしたことである。従来の心リハは病院における監視型運動療法を主としており、参加率低下の要因として仕事、多忙、遠方居住、経済的負担などが挙げられている。特に心不全患者においては高齢者が多いことから、退院後に頻回な通院を強いることが大きな阻害因子であると考えられる。本研究の登録率は80％であり、前述したDavidsonらの報告と比較しても高いことから、通院の負担軽減が退院後の心リハ参加率向上に繋がることが示唆された。

2. 両症型運動管理の安全性

本研究では運動中の心不全症状の増悪は認めなかった。研究の安全性を示す指標は、(1) 退院前に心不全症状、増悪の誘因、増悪時の対応などを説明したこと、(2) 血圧、心拍番、心不全症状の有無、服薬状況について毎日随時記入させること、(3) 入院中に最適歩行速度(Borg11～13)のMETsを身体活動量計で記録し、在宅での運動開始1週間に運動量が最適であるかを確認したこと、(4) 退院後1週間は特別な運動を禁止し、心不全が安定していることを確認した後にSTEP表を用いて段階的に運動量を増やしたこと、(5) 1週間に1度は電気連絡し、心不全症状の有無や運動時の症状の確認を行ったこと、(6) 患者から理学療法士に対し、いつでも連絡がとれるようにしたことなどが挙げられる。これまでの報告では、電話によるフォローアップのもの(23)、数回の監視型運動療法の後に電話でフォローアップしたもの(18)、看護師が訪問して運動負荷を確認した後に電話でフォローアップしたもの(20)(21)、運動中に心拍数を測定して運動強度を管理したもの(22)(25)、運動中に心電図を装着してモニタリングしたもの(24)などがある。

表6 各群におけるSF-36の変化
が、いずれのプログラムでも安全性は良好であったと報告されている。本研究は退院後早期という点でこれらの報告とは異なるが、安全面への配慮に差異はなく、安全性に問題はなかったと思われる。

3. 身体機能

身体機能面の評価では、6MWDと5m歩行速度において介入群のほうが有意に改善した。介入群における6MWDの変化量は、管理群プログラムと1週目の監視下運動療法を施行した先行研究16,17において6MWDの変化量と同等であり、在宅ベースの非監視下運動療法においても監視下運動療法と同程度の運動耐容能改善を得ることが示された。また、5m歩行速度の低下は高齢者の虚弱と強い関係がある。

4. 健康関連QOL

SF-36では、サマリースコアのうちPCSとRCSにおいて介入群のみ有意な改善を認めた。RCSは社会や家庭内における自らの役割をどの程度行っているかという gep指標であり、症候者であれば仕事、高齢者であれば家事や家業といったものが主となる。本研究ではこのような日常生活中に身体活動量計を装着しており、負荷量の確認が可能であった。したがって、その負荷量をもとに仕事量の調節や動作指導を行うことができ、適切な制限を加えたことがRCSの改善に繋がったと考えられる。

5. 本研究の限界

第一に、本研究は一施設における研究であり、また症例数が少ない。したがって、情報提供を正確に反映しているかどうかは定かではない。今後、多施設における研究が必要である。

第二に、評価者が変更化されている。ただし、自己記入式であるSF-36のEOからE3におけるPFの変化量と6MWDの変化量に強い相関関係（r = 0.7）を認めたことから、バイアスは少ないと考えられる。

第三に、本研究では退院後に数週間の介入がなかった。慢性心不全患者の再入院率や死亡率を改善させるためには多施設の介入が必要とされており、本研究では服薬や食事面での管理が不十分であったかもしれません。なお、今回は症例数が少ないことや観察期間が短かったことから、再入院率や死亡率を検討するまでは至らなかった。

結論

退院後早期の慢性心不全患者に対する在宅型運動管理の効果をRCTで検証した。身体活動量計と電話を用いた運動管理は登録率とアドヒアランスが高く、安全性についても問題はなかったが、さらに、対照群と比べて6MWD、5m歩行速度、健康関連QOLの改善を認めた。以上より、退院後早期の慢性心不全患者に対する理学療法士主導の在宅型運動管理は、有効な管理方法であると考えられた。

謝辞：本研究は公益社団法人在宅医療研究奨励記念財団より助成を受けて実施した。本研究にご参加いただいた対象者の皆様、ならびにご協力いただきました関係各位の方々に厚く御礼申し上げます。

文献

Efficacy of a Home-based Exercise Program for Recently Hospitalized Heart Failure Patients

Koji TAKASE, PT, Koji HIGASHINE, PT, Minoru ODA, PT, Makoto MANABE, PT,
Yosihitaka SHIMADA, PT, Riyo OGURA, MD, Takehumi TAKAHASHI, MD,
Yoshikazu HIASA, MD, PhD
Tokushima Red Cross Hospital

Koji TAKASE, PT, Yoshimi MATSUO, PT, PhD
Mukogawa Women’s University

Yukio YANAGISAWA, PT, PhD
Tokushima Bunri University

Purpose: To evaluate the efficacy of a home-based exercise program for recently hospitalized heart failure patients.

Methods: We randomized 35 patients with chronic heart failure into an intervention group (n=17) and control group (n=18). The intervention group patients were monitored using an activity monitor for 3 months and followed up weekly via telephone interview by a physical therapist to assess walking steps and symptoms. Intervention group patients followed a step chart to increase the number of walking steps gradually to achieve a target number. Health-related quality of life, 6-min walk distance, and 5-m gait speed were evaluated at baseline, 1 month, and 3 months.

Results: In total, 80% of eligible patients were able to participate in this study, and 71% of the intervention group patients completed the program. Exercise intervention significantly improved the 6-min walk distance, 5-m gait speed, and health-related quality of life. No adverse events were observed in either group.

Conclusion: A home-based exercise program monitored by a physical therapist is useful for recently hospitalized heart failure patients.