2023 年 50 巻 5 号 p. 177-185
【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting(XGBoost)で,退院時ADL自立の可否を予測した。そして寄与因子をSHapley Additive exPlanations(SHAP)で調査した。【結果】退院時ADLの予測精度は高く,寄与因子としてFunctional Ambulation Category, Brünnstrom Recovery Stage下肢,Ability for Basic Movement Scale II(以下,ABMS-II)寝返り,Barthel index更衣,ABMS-II立位が高寄与順であった。【結論】急性期脳卒中患者の退院時ADLは,歩行や麻痺側下肢機能,動作能力が最も寄与することが示唆された。