NOTE

Vertical Distribution of 137Cs and Its Accumulation Rate in Lake Sediments

Kokichi KAMIYAMA, Setsuo OKUDA and Mutsuo KOYAMA

Abstract

Vertical distributions of 137Cs in the sediments of Lake Biwa, Lake Suigetsu and Lake Mikata were measured by the non-destructive gamma counting technique using a germanium-lithium detector. Possible sedimentation rates were estimated based upon the depth of 137Cs penetrating into the sediments.

1. Introduction

In order to understand the circulation processes of substances in lakes, it is fundamental to know the deposition rate of substances onto the lake bottom, since the deposition process is a major removal process of substances from the water body. There has been a rapid increase in population in the catchment area of some lakes for the last 20 years, and rapid eutrophication has been observed in many lakes. Therefore the investigation of the circulation processes of substances in lakes will be important from both limnological and environmental points of view.

Recent sedimentation rates have been estimated using 210Pb in some lakes in Japan (MATSUMOTO, 1975 a, b). The present study describes the vertical distribution of 137Cs in the sediments, and possible sedimentation rates were estimated based upon the data.

Nuclear weapon tests have released several radionuclides, which have returned to the earth’s surface as fallout. 137Cs was first detected in the atmosphere in 1954. Annual deposition of 137Cs in Tokyo was reported by MIYAKE and KATSURAGI (1969), and it was found that the maximum inputs occurred in 1959 and in 1963 as was reported in many places in the world (RICHIE et al., 1973). 137Cs is tightly adsorbed on soil particles and will provide information on the age of sediments.

2. Methods and Materials

Samplings of lake sediment cores were conducted in 1979 in several lakes of Japan (Fig. 1). Of these lakes, only Lake Suigetsu is brackish, whereas the others are fresh water. In Lake Biwa, the points O and S are located near the center of the north and the south basins respectively. The point Y in the north basin is located...
off the mouth of the River Yasu, one of the large rivers flowing into Lake Biwa, and the points A, B, D and E are located at 10, 30, 70 and 90 m water depths, respectively, along a line from the River Amano toward the deepest point of Lake Biwa. The points SU and M are located near the center of Lake Suigetsu and Lake Mikata, respectively.

After sampling, each sediment core was pushed out from the sampling tube and was cut into 0.5 or 1.0 cm slices with a knife on the boat and brought back to the laboratory. After the measurement of moisture content, 137Cs activity was measured using about 20 g of sediment samples. 137Cs activity in each sample was directly determined by the non-destructive gamma counting technique using a germanium-lithium detector (53 cc) coupled to a 4 K channel pulse height analyser. This technique allows a clear separation of 661 KeV 137Cs gamma rays in the presence of those from 208Tl (583 KeV) and 214Bi (609 KeV) (Fig. 2). The samples were counted for at least 80 K sec to obtain good statistical accuracy. The limit of detection for 137Cs by this method is 0.05 pCi/g and the counting error is about 5%. This method has been used for the determination of 137Cs activity in lake sediments (KRISHNASWAMI et al., 1971) and in rocks (SATO et al., 1977).

3. Results and Discussion

The vertical distributions of 137Cs in the bottom sediments are shown in Fig. 3. Cores at the points A, Y and M are not deep enough for 137Cs to disappear. LERMAN and LIETZKE (1975) reported that 137Cs might move in sediment column by diffusion after burial. ROBBINS and EDGINGTON (1975) pointed out that the 137Cs profile in sediments was perturbed by benthos. Therefore, the sedimentation rate calculated from the penetrating depth of 137Cs in sediments is the roughly estimated value.

The penetrating depth and the calculated sedimentation rate of each core is given in Table 1. The sedimentation rates in the central area of Lake Biwa are ranged 0.12 to 0.26 cm/year and roughly agree with the rates by 210Pb technique (MATSUOMOTO, 1975 a). The rates in the coastal area of Lake Biwa seem to be higher than those in the central area, though sediment perturbation is undeniable. The rate in Lake Suigetsu is 0.12 cm/year, and the rate in Lake Mikata >0.20 cm/year. Since Lake Mikata is very shallow, it is undeniable that surface sediments were mixed by wave action and other factors.

Fig. 2. Gamma ray spectrum of a sediment core sample (1.0-1.5 cm depth core sample at the point D, 12.7 g dry weight sediments, counting time=80 K sec).
Acknowledgements

We are sincerely grateful to Dr. Y. Isozumi of the Radioisotope Research Center, Kyoto University, for his advice in gamma ray counting. We also thank Dr. A. Kawai of the Research Institute for Food Science, Kyoto University and Mr. K. Yokoyama of the Disaster Prevention Research Institute, Kyoto University, for their help and advice in obtaining the sediment cores. A part of the gamma ray analyses was carried out in the Radioisotope Research Center, Kyoto University.

Fig. 3. Vertical distribution of 137Cs in sediment samples.

Weibull equation: $y = ae^{-bx^c}$

The equation is given in the form of $y = ae^{-bx^c}$, where y is the vertical distribution of 137Cs, x is the depth of sediments (cm), and a, b, and c are constants. The equation is used to describe the vertical distribution of 137Cs in sediment samples.
Table 1. Penetrating depth of 137Cs in the sediments and the sedimentation rate estimated.

<table>
<thead>
<tr>
<th>Point</th>
<th>Water depth (m)</th>
<th>Penetrating depth (cm)</th>
<th>Sedimentation rate ($\text{cm} \cdot \text{year}^{-1}$)</th>
<th>Sedimentation rate ($\text{g} \cdot \text{cm}^{-2} \cdot \text{year}^{-1}$)</th>
<th>Sampling date</th>
</tr>
</thead>
<tbody>
<tr>
<td>S U</td>
<td>32</td>
<td>3.0</td>
<td>0.12</td>
<td>0.010</td>
<td>Aug. 1979</td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td>>5.0</td>
<td>>0.20</td>
<td>>0.055</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>28</td>
<td>>5.0</td>
<td>>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>4</td>
<td>6.0</td>
<td>0.24</td>
<td></td>
<td>Jan. 1979</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>>10.0</td>
<td>>0.40</td>
<td>>0.41</td>
<td>Dec. 1979</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>6.5</td>
<td>0.26</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>70</td>
<td>4.0</td>
<td>0.16</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>90</td>
<td>3.5</td>
<td>0.14</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>73</td>
<td>3.0</td>
<td>0.12</td>
<td>0.039</td>
<td>Aug. 1979</td>
</tr>
</tbody>
</table>

References

RICHE, J. C., J. R. MCHENRY and A. C. GILL (1973) : Dating recent reservoir sediments.