産業化学物質の生殖毒性——プロモブロペン中毒を中心として——

竹内康浩（名大医衛生）

1. はじめに
プロモ等が地球のオゾン層を破壊する恐れがあるために、1987年に「オゾン層を破壊する物質に関するモントリオール議定書」が採択され、それにもとづいて先進工業国では1995年までにクロロフルオロカーボン（CFC）と1,1,1-トリクロロエタンの生産が制限された。韓国のH社の電子部品工場では2-プロモブロペンがフロン113の代替溶剤として1994年2月から使用され、1995年7月に5名の男性労働者が月給が停止していることが偶然発見された。この職場の疫学的調査の結果が1995年10月の報告書としてまとめられ、論文としても発表された3,4,5。我々は1995年暮れより2-プロモブロペンの生殖毒性を検討するために、吸入暴露による動物実験を行なってきた。ここでは労働者における中毒発生の状況、動物実験結果及びこれらが提起した産業化学物質の生殖毒性問題について話題を提供したい。

2. プロモブロペン使用者に発生した生殖機能障害
表1に示すように、韓国電子部品会社のタクトスイッチ製造工場で2-プロモブロペンを使用していた男性労働者17名に卵巣機能低下症、男性労働者6名に精子形成機能低下症、生殖機能及び造芽器障害が共に認められたもの7名が発生した。しかし、2-プロモブロベンを使用していない他の職場では生殖機能障害及び造芽器障害はいずれも発生していない（表1）。男性労働者では月給の停止、FWSの著しい上昇、貧血等が認められ、男性労働者では精子の減少等が認められた。タクトスイッチ製造工場に設置された

<table>
<thead>
<tr>
<th>仕事の種類</th>
<th>労働者数</th>
<th>正常者</th>
<th>異常者</th>
</tr>
</thead>
<tbody>
<tr>
<td>タクトスイッチ製造工場</td>
<td>男</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>女</td>
<td>20</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>他のスイッチ製造工場</td>
<td>男</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>女</td>
<td>65</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

浸漬液自動注入装置を有した正規の浸漬容器がない状態で浸漬液の補充は手作業で行っていた。この状態で1994年11月末まで作業が行われた。その後、労働者の暴露濃度は高濃度に達したものが示された。

まとめ
1) 男性に対する毒性実験
雄ラット各群9匹を用いて2-プロモブロペン3,000 ppm, 1,000 ppm, 300 ppm, 8時間/日、9週間吸入暴露実験を行った。3,000 ppm群は9～10日で雄ラットの発育状態になったので暴露を中止し、3匹1日に3匹2日に9週後に剖検して観察した。体重は3,000 ppm群で雌ラットに著しく減少したが、その後減少が回復し、9週後に300 ppm群とほぼ同じになった。1,000 ppm群は雌ラット中はほとんど体重が増加しなかった。300 ppm群は雌ラットも体重增加は了ならなかったが、対照群より増加率は有意に小さかった。雌ラットの結果は2-プロモブロペンが雄ラットに対する精卵器に対して特別な変な毒性を有することを示した。

図1 2-プロモブロペン暴露による雌ラット精卵器毒性の変化

2) 雌ラットに対する毒性実験
雌ラット20匹、2-プロモブロペン1,000 ppm, 300 ppm, 100 ppm, 8時間/日、9週間暴露実験を行った。雌ラットの栄養性体周の変化は表2に示した（表2）。

1,000 ppm群では卵巣では雌ラットの卵巣が不妊をはじめ、4匹では連続発情状態となり、残りの5匹では発情休
止期が著しく延長した。300 ppm 群では 7 週目から発情停止期が延長した。卵巣の組織所見では、1,000 ppm 群及び 300 ppm 群で濃度依存的に正常卵巣数の減少、閉鎖卵巣及び囊胞状卵巣の著しい増加、異体数の減少がみられた。卵巣以外の臓器には特別な変化は認められなかった。これらの所見から、2-プロモプロパンが卵巣に対しても特異的な毒性を有することが認められた。

表 2 周期毎の性サイクルの変化

<table>
<thead>
<tr>
<th>被薬剤</th>
<th>暴露前</th>
<th>1-3週</th>
<th>4-6週</th>
<th>7-9週</th>
</tr>
</thead>
<tbody>
<tr>
<td>対照群 (N=7)</td>
<td>7 0 0</td>
<td>7 0 0</td>
<td>5 2 0</td>
<td></td>
</tr>
<tr>
<td>100ppm (N=8)</td>
<td>8 0 0</td>
<td>8 0 0</td>
<td>7 0 1</td>
<td></td>
</tr>
<tr>
<td>300ppm (N=8)</td>
<td>8 0 0</td>
<td>8 0 0</td>
<td>6 2 0</td>
<td></td>
</tr>
<tr>
<td>1000ppm (N=9)</td>
<td>9 0 0</td>
<td>4 5 0</td>
<td>4 5 0</td>
<td>0 1 8</td>
</tr>
</tbody>
</table>

*: p=0.01
規則の: 3.5-5.5サイクル/3週、不規則: 5.3サイクル/3週、なし: 1サイクルなし

4. 産業化学物質の生殖毒性の再検討の必要性

よく使われている数万種の産業化学物質の中では生殖毒性が注目されているものは少ない。Ellenhorn は最近の中毒学の教科書で生殖毒性情報のある産業化学物質23種を取り上げている。その内、男性特異性の生殖障害を示したものは21種で、精子数の減少等を主として精巣障害である。女性（雌性）の場合は副形を含めた7種、流産等5種で、卵巣の障害は示されていない。男性（雌性）の生殖障害は主として精巣機能障害である。女性（雌性）の生殖障害は卵巣機能障害の他に、受精卵の着床、妊娠維持、胎児の発育等一連の複雑な過程の障害が含まれる。思慮障害の原因は図 2 に示したように生殖器官への直接作業のみでなく、神経系、内分泌系等を介する間接的な作用によっても障害される（図2）。従って、生殖毒性の評価にあたってはこれらを考慮した総合的な検討が必要である。

今回の 2-プロモプロパンは特異的に精巣と卵巣を障害を障害することが明らかとなり、電磁放射線や抗がん剤等でも同様の障害が生じることが報告されているので、産業化学物質の中には精巣や卵巣への直接作用を有するものも少なくないと考えられる。

5. 生殖毒性物質に対する国際的取り組み

ヨーロッパでは、最近相次いで職場環境での生殖及び次世代への影響を考えた法制度の整備を行い、化学物質等のMSDS の必要事項を備ることから生殖毒性に変え、不妊や発育障害を含めるようにした。化学物質の生殖毒性分類もIARCの発がん物質分類に準じた分類の試みている。また、米国の Jankovic らは生殖毒性情報のある化学物質をEPA（米国環境保護庁）のリスクアセスメント手法を用いてスクリーニングし、213種の職業性発育障害影響ガイドラインの作成を試みている。

6. まとめ

化学物質の生殖毒性は人間の生存にとって極めて重要な問題であり、世界的に化学物質の毒性評価と予防対策の取り組みが進められている。産業化学物質の生殖毒性は中枢神経、自律神経、内分泌系を介する非特異的なもののみではなく、精巣や卵巣に対する直接的毒性も解明されつつある。特に最近フロン代替剤として用いられた 2-プロモプロパンは労働者の中毒例と動物実験結果から、特異的な生殖毒性を有することが明らかとなり、産業化学物質の生殖毒性を見直す必要性を示した。

7. 参考文献

2. 韓国産業安全労働者保健康研究所、業山LG電子部品（株）最終報告書、1995
7. Ellenhorn MJ. Ellenhorn's Medical Toxicology Williams & Wilkins Baltimore, 1997:149