Late Follow-up Review of Clipped Cerebral Aneurysms

Kenichi KARINUMA, M.D., Isaharu EZUKA, M.D., Haruyuki YAMADA, M.D., Atsukuni HARAIDA, M.D., and Mayu TAKASHI, M.D.

Department of Neurosurgery, Niigata Rohsai Hospital, Labor Welfare Corporation, Jyoutsu, Japan

Summary: A long time follow-up study of a single-institution series can provide reliable information on surgical results of cerebral aneurysms. Therefore, of 849 patients with cerebral aneurysms operated at Niigata Rohsai Hospital, 482 cases were studied to determine the incidence of recurrent subarachnoid hemorrhage (SAH). Seven patients (5 from de novo, and 2 from growth of residuum) developed recurrent SAH at a mean interval of 87.0 months, yielding an overall hemorrhage risk of 0.20% and a hemorrhage risk from originally clipped site of 0.042% per year. To reveal de novo aneurysms formation and the fate of clipped aneurysms, 128 cases underwent late follow-up angiography and/or 3-dimensional computed tomography (3DCT). Eight de novo aneurysms were found at a mean interval of 96.4-month postsurgery for an annual risk of 0.78% per year. Eight residua were noted, of which 5 enlarged.

We conclude 1) long-term efficacy of aneurysm clipping showed a very high permanent obliteration rate, 2) the patients with aneurysms have a high risk of recurrent SAH, even after a "satisfactory" clipping of the aneurysms, at about 10 times that of the general population. Based on these findings and a review of the reported literature, we suggest the following for optimal late review: 1) 3DCT and/or MRA review is probably required to discover de novo as screening for routine, 2) the necessity of late angiographic study should be weighted with a known residua, 3) closer surveillance of females with multiple aneurysms is warranted more than in males.

Key words: cerebral aneurysm, clipping, recurrence

Surg Cereb Stroke (Jpn) 30: 88-92, 2002

はじめに

脳動脈瘤治療においては、従来からneck clipping術が広く行われてき、しかし術後数年を経て動脈瘤が再発し、再出血をきたすことが報告されるようになっている113)1015-17.127.135).また回帰手術時には、確認されなかった動脈瘤が新たに形成され、これからの出血にも関心が高まっていている10-22).また、血管内手術の進歩により治療法を再検討すべき時期であるとされているが224), neck clipping術の長期成績を明らかなことには、今後も動脈瘤の適切な治療法を検討、選択するうえでのよい指導になりうるものと考えられる。

新潟労災病院 脳神経外科 動労者脳血管センター(受稿日2001,9,5)(速報先：〒942-8506 新潟県上越市東雲町1-7-12 新潟労災病院 脳神経外科 柿沼健一) [Mailing address: Kenichi KARINUMA, M.D., Department of Neurosurgery, Niigata Rohsai Hospital, Labor Welfare Corporation, 1-7-12 Tomcho, Jyoutsu, Niigata 942-8506, Japan]
Table 1 Summary of 7 cases with recurrent SAH

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Site of original aneurysm</th>
<th>Grade (H & K)</th>
<th>Surgery</th>
<th>Site of second aneurysm</th>
<th>Interval (De novo or regrowth)</th>
<th>Grade (H & K)</th>
<th>Surgery</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37</td>
<td>F</td>
<td>R.MCA</td>
<td>1</td>
<td>clipping</td>
<td>Acom, R.Pcom*</td>
<td>144 M</td>
<td>De novo</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>F</td>
<td>R.Pcom</td>
<td>1</td>
<td>clipping</td>
<td>R.VA, PICA</td>
<td>156 M</td>
<td>De novo</td>
<td>4</td>
<td>clipping</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>F</td>
<td>L.Pcom, Acom*</td>
<td>1</td>
<td>clipping</td>
<td>R.Pcom</td>
<td>154 M</td>
<td>De novo</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>F</td>
<td>L.MCA</td>
<td>2</td>
<td>clipping</td>
<td>Acom</td>
<td>17 M</td>
<td>De novo</td>
<td>2</td>
<td>clipping</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>F</td>
<td>L.MCA</td>
<td>2</td>
<td>clipping</td>
<td>R.PCA</td>
<td>48 M</td>
<td>De novo</td>
<td>3</td>
<td>clipping</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>F</td>
<td>L.PCA</td>
<td>2</td>
<td>clipping</td>
<td>L.PCA</td>
<td>36 M</td>
<td>Regrowth</td>
<td>2</td>
<td>clipping</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>F</td>
<td>L.PCA, Acom*</td>
<td>2</td>
<td>clipping</td>
<td>L.PCA</td>
<td>54 M</td>
<td>Regrowth</td>
<td>2</td>
<td>clipping</td>
</tr>
</tbody>
</table>

* = unruptured aneurysm

新潟労災病院脳神経外科では1983年以降、脳動脈瘤症例に対して一貫した積極的neck clipping術で臨んでき7,14,20,32,34]. distalから脳瘤を十分に解放し、病変と鞘を確実するmicro surgery、同一術者とその指導下で行われた800例以上に達する集積である。一術設単純の成績ではあるが、このような基本姿勢で変わらず行えてきた当科の症例の長期にわたる追跡調査を行うことは意義のあることと考えられる。したがって、ここでは当科における術後の脳動脈瘤及び脳動脈瘤の再発について調査を行い、neck clipping術の長期成績について検討した。さらに術後の有益なfollow-upの方法についても、これらの結果に文献的考察を加えて検討した。

対象および方法

1983年4月1日から2001年10月4日までに新潟労災病院脳神経外科では、840症例の動脈瘤に対して直達術を行った。内訳は649例が破裂動脈瘤、191例が未破裂動脈瘤であり、815例(97.0%)にneck clipping術が施行された。他は、trappingが10例、proximal ligationが6例、wrappingが9例である。

1）脳動脈瘤の再発は、実際に当科に再入院となった症例のほかに、外来診療録とアンケートの郵送によって、再発の有無が判明した482例のneck clipping術後の症例で検討した。再発までの期間、再発の原因、性別、年齢、さらにその後の追跡調査を行った。

2）動脈瘤の再発は、de novo動脈瘤と動脈瘤再増大に分け、これまで報告されている方法に従って35]、初回の手術時に行われた血管撮影ではみられなかった部位や初回に動脈瘤が認められた場合のde novo(新生)動脈瘤とし、手術後は動脈瘤の再増大を示した場合を動脈瘤再増大とした。また、clipping術の確実性を検討するために残存neckの変化についても着目した。方法は、くも膜下出血を再発していない症例のうち、初回手術から5年以上経過した70歳以下の症例を指標とし、これらのうちから同意を得られたものにおいて脳血管撮影と3DCTを行い、再発同定までの期間、部位、性別について検討した。

結果

1. くも膜下出血の再発

脳動脈瘤を再発した症例のうち、うち6例が出血再発症例であった。したがって再出血率は14.5%、再出血までの期間は17か月から156か月で平均87か月であったので、年再出血率は0.25%/年と算出した。男性比は0.7で、原因はde novo動脈瘤が5例、前回clipping部位からの動脈瘤再増大が2例であった。これらのうち、再出血時にclippingを施行できた5例では、脳血管撮影にて熟療のため、後遺症のないまま死亡した(Table 1)。その他の5例のうち、3例は平均64か月でde novo動脈瘤が再発し、そのうち2例はこのde novo動脈瘤からの出血により死亡した。

2. 脳動脈瘤の再発・再増大

脳血管撮影にて31例、37例ではその再発症例は128症例(130 clips)の総計471例にわたって動脈瘤の再発を検択し、検査までの期間は平均122か月であった。その結果、8例のde novo動脈瘤が観察され、診断までの期間は10か月から180か月で平均96.4か月、男性比は3：5であった(Table 2)。clipping部位の残存neckは、8例に確認された。このうち3例では初回と変化がなかったが、5例(5.2%)では脳動脈瘤の再増大が認められ、これらはすべて女性であった(Table 3)。

考察

1. くも膜下出血の再発

脳動脈瘤clipping術後の患者が、数年を経てもくも膜下出血を再発することが知られている。近年徐々にデータが報告されはじまっている。Juvelaら13]は131例の動脈瘤の再発
果からくも膜下出血の年再発率を1.38%とし、やや高めの数字を報告しているが、Tsutsumiらの220例から年0.25%、久保田らの237例で年0.21%、Davidらの102例から年0.52%をとっている。われわれの検討はこれらの報告より症例数は多いが482例で調査されたものであるが、年0.2%とおおむね一致した結果である。一方、未破裂動脈瘤の年出血率については、0.05%とする極端に低いISUIAの報告にみられるが、この研究には症例に偏りが多いことなどを指摘する論文もしくは、未破裂動脈瘤の年出血率は1%から2%とみてののが妥当であるようである18)

また、一般人口を対象としきくも膜下出血の発症率は0.0~0.03%とされており19)，われわれの主な診療機である上越市でくも膜下出血の発症は、85年から90年
の調査で0.02%であるので、clipping術後の患者のくも膜下出血の年再発率は、存在が否定されている未破裂動脈瘤の年出血率に及ばないものので、一般人口の約10倍程度と考えられる。したがって、clipping術後の患者は必ずしも治療したものとはみなさない追跡が必要であると考えられる。

2. de novo動脈瘤

くも膜下出血の再発の原因としては、de novo動脈瘤と初回clipping術からの動脈瘤の再増大という2つの問題を区別しなければならない。このうち、de novo動脈瘤については、過去にclippingが行われた症例を、血管撮影などにより積極的に追跡調査し、年再発率を検討した報告がみられるようになってきている。Rinneらが、平均5.3年間follow-upの1150例を検討から0.03%から0.047%としており20)，Davidらも平均4年間観察した102例から1.8%を、内川らが報告している平均12年間の調査の54例からは、1.4%と算出することができる20)。今回のわれわれの検討では年0.78%であった。3DCTやMRAの診断精度の向上により、今後de novo動脈瘤と診断したい症例に遭遇する機会が増えていくものと思われる。しかし血管撮影でもさまざまな角度からの撮影や拡大撮影を駆使しないかぎり、小さな動脈瘤を同定できないことは、しばしば経験されることであり、de novo動脈瘤とされたものは、微小の動脈瘤などの変化を見落としたfalse negative例であることを指摘した報告もある21)。一方で、de novo動脈瘤からの出血については、Millerらは、通常の動脈瘤破壊頻度よりも3~4倍高いとしており22)，後述のようにde novo動脈瘤くらい膜下出血の再発の原因となることが多い。しかし、de novo動脈瘤を長期に追跡して出血を詳細に検討した報告はまだみられず、de novo動脈瘤については今後の多角的調査が望まれるところである。

3. 動脈瘤再増大とclipping術の確実性

初回のclipping部に関しては詳細に検討した報告はみられ、残存neckから動脈瘤が再増大することは以前から知られているが、Davidら19)は、術後発した血管撮影で残存neckのなかった動脈瘤の年再増大率が0.5%であったのに対して、残存neckがあったものとの年再増大率は有意に高く、29%であったと報告している。Sakakiらは、complete clippingにもかかわらず動脈瘤が再発することも着目し、年0.0075%という結果を報告している23)。実際に問題となるのは、その部位のくも膜下出血の再発であるが、Davidら19)は、残存neckがなかった動脈瘤での年再発率を0.26%、残存neckがあったものでは1.5%と報告している。Feuerbergらもneckが残っているものでは再発率が高いことを指摘し、年0.38~0.79%としている24)，さらには1mm以上のneckが残っている場合には動脈瘤の再増大と再出血の危険が特に高いことへの注意を喚起したLinらの報告もみられる25)。これらの報告は、必ずしもclipping術が完全な動脈瘤の根治手術ではないことへの警告であり、また傍眼せずともneckが残存してしまう場合、さらには、親血管や枝分れの融解のために意図的に動脈瘤巻部を残さざるを得ない場合も存在することを示唆している。

Table 2 Summary of 8 cases with de novo aneurysms identified by follow-up review

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Site of first aneurysm</th>
<th>Site of de novo aneurysm</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57</td>
<td>M</td>
<td>Acrom</td>
<td>LMCA*</td>
<td>180 M</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>F</td>
<td>LPCA</td>
<td>BA</td>
<td>130 M</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>F</td>
<td>R.MCA*</td>
<td>R.Pcom</td>
<td>108 M</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>M</td>
<td>L.ancho</td>
<td>L.C*</td>
<td>69 M</td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>F</td>
<td>LMCA*</td>
<td>LVA.PICA* R.VA</td>
<td>100 M</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>M</td>
<td>LMCA</td>
<td>LMCA*</td>
<td>50.5 M</td>
</tr>
<tr>
<td>7</td>
<td>73</td>
<td>F</td>
<td>LMCA*</td>
<td>R.MCA*</td>
<td>42 M</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>F</td>
<td>LMCA</td>
<td>BA</td>
<td>92 M</td>
</tr>
</tbody>
</table>

*a=unruptured aneurysm

Table 3 Summary of 8 cases showing residua and their changes

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Site of first aneurysm</th>
<th>Surgery</th>
<th>Change of residual neck</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>F</td>
<td>L.VA.PICA</td>
<td>clipping</td>
<td>No change</td>
<td>132 M</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>M</td>
<td>R.Pcom</td>
<td>clipping</td>
<td>No change</td>
<td>85 M</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>F</td>
<td>R.MCA</td>
<td>clipping</td>
<td>No change</td>
<td>65 M</td>
</tr>
<tr>
<td>4</td>
<td>51</td>
<td>F</td>
<td>Acrom</td>
<td>clipping</td>
<td>Growth</td>
<td>167 M</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>F</td>
<td>R.MCA</td>
<td>clipping</td>
<td>Growth</td>
<td>168 M</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
<td>F</td>
<td>R.Pcom</td>
<td>clipping</td>
<td>Growth</td>
<td>96 M</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>F</td>
<td>L.Pcom</td>
<td>clipping</td>
<td>Growth</td>
<td>149 M</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
<td>F</td>
<td>R.VA.PICA</td>
<td>clipping</td>
<td>Growth</td>
<td>172 M</td>
</tr>
</tbody>
</table>

90 腦卒中の外科 30: 2002
Table 4 Characteristic factors of de novo aneurysms from our experience and reported literature

<table>
<thead>
<tr>
<th>Characteristic factors of de novo aneurysm</th>
<th>Present study</th>
<th>Reported literature review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent SAH from de novo: residual</td>
<td>5 : 2</td>
<td>65 : 27</td>
</tr>
<tr>
<td>De novo growth at other vessels: original vessel</td>
<td>11 : 1</td>
<td>51 : 7</td>
</tr>
<tr>
<td>De novo female: male dominance</td>
<td>9 : 3</td>
<td>76 : 45</td>
</tr>
<tr>
<td>Aneurysmal multiplicity: single</td>
<td>1 : 1</td>
<td>24 : 61</td>
</tr>
</tbody>
</table>

4. 術後のfollow upのあり方

さて、くも膜下出血の再発は、初回の出血に比較してきわめて予後は悪いとされ、死亡率は40%から50%にも及ぶとする報告が多く、われわれの症例も最終的に半数以上の4例が死亡している。しかしながら、follow-upの方法として、脳血管撮影は全血管系の検査を遂行できない場合もあり、MRAや3D-CTに比較すれば、侵襲的な検査であることは否定できない。加えて、今回の結果からも脳血管撮影によってde novo動脈瘤や動脈瘤の再発が発見される可能性は高いといえ、完治したと理解している患者に脳血管撮影をroutineのscreeningとして行うことは妥当ではないと考えられる。一方MRAや3D-CTは、簡便で繰り返し施行する利点はあるが、clipping部の情報がartifactによって消去されててしまうなどの問題がある。そこで、最も確実で簡便なfollow-upの方法については検討するために、1) くも膜下出血再発はde novo動脈瘤と動脈瘤増大のどちらに起因ことが多いのか、2) de novo動脈瘤の発生と前回clippingの血管との関連、3) de novo動脈瘤の発生における性差、4) 初回出血時多発性の動脈瘤を有していた症例ではde novo動脈瘤を発生しやすいのか、の4項目に着目した今回の結果とこれまでの報告1) 4) をreviewしたのがTable 4である。この結果からは1) くも膜下出血の再発は、clipping部からの動脈瘤再発増大もde novo動脈瘤に起因することが多い。2) de novo動脈瘤は初回の動脈瘤の部位とは異なる血管系に生することが多く、3) de novo動脈瘤は男性よりも女性に形成されやすく、4) 初回出血時多発性の動脈瘤を有していた症例はde novo動脈瘤を発生しやすい傾向があることが示された。したがって時には、検査、治療の思慕が期待される年齢、健康状態、神経学的脱落症状の程度をまず考慮したうえで、術後のfollow upは以下のよう

本文参考文献

5) 江畑勇, 植木幸五: 碎裂動脈瘤の臨床的解明. 新潟県医師会報 460: 9-18, 1988
7) 江畑勇, 高井信行, 反町隆俊, 他: Temporary clippingを極力使用しない立場での脳動脈瘤手術. 脳卒中外科 19: 360-365, 1991
8) 江畑勇: 私信
10) Inagawa T, Ishikawa S, Aoki H, et al: Aneurysmal sub-

Surgery for Cerebral Stroke 30: 2002 91
arachnoid hemorrhage in Izumo City and Shimane Prefecture of Japan. *Stroke* 19: 170–175, 1988
14) 内藤健一, 江塚 勇, 山田行治, ほか: 脳動脈瘤再発からみたクリッピング術後の長期follow up. 日本職業・災害医学会雑誌 49: 523–537, 2001
19) 松森進彦, 塚山孝正, 上原文雄, ほか: 2年7カ月に新生した前駆動脈瘤後小脳動脈動脈瘤の1例. 脳卒中の外科 29: 64–67, 2001