摘 要
1967年6月2日、青森県北津軽郡金木町にあるヒバ（ヒノキアハラノ）林（約145年生林）が火災にあった。そのヒバ林の被災状況ならびに再生状況について調査したところ、次のことわかった。
1. 山火によるヒバ林の被災は松林より大きく、立木の約90%が樹冠部の葉を褐色に変え枯死した。
2. 樹幹の黒焦げの最高位置は主風の風下側にあった。
3. 山火跡地にはタラノキ、ヌルメ、ウフィズザクラ、クマイトゴ、ホウノキ、ヤマブドウ、タサギ、ススキ、アレチノギク、アキノノゲシなど新しく侵入した植物が優勢となった。
4. また、生活形および繁殖型では山火跡地では大型地上植物、半地中植物、一年生植物が増加し、地中植物、つる植物は減少していた。繁殖型ではD2型の増加をD1型の減少がめっただった。

寄主単独個体群と寄主・寄生雛相互作用系の寄主の増殖曲線
京都大学農学部昆虫学研究室
岡本 紀 久

THE REPRODUCTION CURVE OF HOST IN HOST-PARASITE INTERACTING SYSTEM AND PARASITE FREE SYSTEM
Kiku OKAMOTO
Entomological Laboratory, College of Agriculture, Kyoto University, Kyoto

Synopsis

Using the azuki bean weevil, Callosobruchus chinensis (L.) and its larval parasite, Anisopteromalus calandrae (Howard), the population fluctuation in host-parasite interacting systems and that in parasite free systems were examined under the physical condition of 30°C and 70% R.H. Strictly constant quantity of larval food was supplied to each generation.

In the parasite free systems, the host populations maintained nearly constant levels of their density (Fig. 1), and the reproduction curves of saturation type were obtained from these population fluctuation (Fig. 2). Besides the relation between parental density and progeny density in particular generations, was examined and mountainshaped reproduction curves were obtained as shown in Fig. 3. Rather concentrated age distribution and narrow space of experimental cages may have been responsible for this type of reproduction curve. In the host-parasite interacting systems, the relationship between the final host density in a given generation and the initial host density in the next generation was represented by a saturation curve. As the initial host density, it is reasonable to use the sum of the numbers of emerged hosts, parasites and further dead corpses of the host in the beans. Thus, the reproduction curve of the azuki bean weevil was fundamentally regarded as a saturation type in the populations of both the parasite free systems and the host-parasite interacting systems.

1971年7月17日受領
京都大学農学部昆虫学研究室編集第436号
はじめに

動物の個体群の変動を説明するものの一つとして、
食者と食われる者の種間関係が注目されて入って、
Nicholson & Bailey（1935）は、寄主寄生者の相互
作用についての数値的モデルの一つを提出し、個体数
変動を説明しようと試みた。また、内田（1960, 1951）は
アズキソウムシ Callosobruchus chinensis（L.）とその
幼虫寄生雛 ソウシコガネコバチ Anisopteromalus
calandræa（Howard）を用いて、50 数世代にわたって
その個体数変動を調べたが、数学的に期待されるような
著しい変動が認められなかった。さらにアズキソウムシ
とその幼虫寄生雛 Heterospilus prosopidis（Viereck）
を用いて、20数世代実験個体群を継続させた（1953）、そ
の結果から、寄主の種内密度効果を考慮した数学的モデ
ルを組み立てたのがあるが、寄主の2 世代の増殖関係を
示す増殖曲線を、極小値をもつ山型の曲線とし、これが
個体群変動を左右するものとして、大きく評価した。し
かし、それを実験的に証明しようと試みた内田（1941）
では、それぞれの世代の供給量が厳密に一定であったか.
どうか疑わしい、何故なら、食べ残りの小豆が世代に
利用される可能性があり、食事の残存量が個体群変
動に影響して、表面的に寄主の2 世代間の増殖曲線から
予想されるような減衰振動を取り入れているかもしれない
からである。

また、Nicholson & Bailey（1935）の数学的モデ
ルでも、内田（1953）の数学的モデルにおいても、寄主の
始めの密度という概念が使われているが、内田は便宜的
に寄主の始めの密度を寄主の減少の密度と寄生雛数との
合計としてあげた。そして寄生雛が寄主に寄したとき
には、寄主は消えごともしないものとして仮定している。
しかし、寄主の対象となったであろう寄生数には、寄主
の消えごとにおかれるべきである、何故ならば、寄
主の増殖力と寄生雛の寄生能の評価は、寄生の対象
となった令期寄主幼虫数が明らかとならない限り出来
ないからである。

そこで筆者は、これらの2 点を考慮しながら、アズキ
ソウムシとゾウシコガネコバチを用いて、アズキソウ
ムシだけの単独個体群と相互作用系の個体群を作り、1
世代間の食事量を一定にして、個体群変動を、死にこ
り数を毎世代挙げた、その結果から、個体群変動を支配
する寄主の増殖曲線を考察した。

本文に入れるに先き立ち、御指導と御批判を賜わたった当
研究室の内田俊郎教授と高橋史規教授に厚く御礼を申し上げたい。

材料と方法

1) 材料

寄主として用いたアズキソウムシもその寄生雛のソウ
ムシコガネコバチも共に前に用いたものと同一の系統
である。略記すると、アズキソウムシは5 つの地理的系
統を交雑させて多様性を高めたものであり、ゾウシコ
ガネコバチは寄主産卵後14 日越過した寄主幼虫を与え
て、2〜3 世代飼育し続けたものである。

2) 方法

寄主の群としての小豆は大納言品種で、含水量を約
15% に調湿したものである。

実験はすべて、30℃, 70% R. H. の実験室内で行
なった。

個体群の設定と飼育方法

20 対のアズキソウムシと、20 g の小豆をプラスチック
ケース（直径 8 cm, 高さ 3 cm）に入れ、大型の飼育容
器中に置いた。飼育容器は 8 cm × 18 cm × 25 cm のシール
バghtで、両側面に4 つの空気孔（直径 4.5 cm）をあ
け、金網を張ったものである。このようにして、アズキ
ソウムシだけの単独個体群を設定した。2 週間後、次世
代のアズキソウムシが羽化すればすぐに産卵段階をとる
如く、20 g の小豆をシェーレに入れ飼育容器中に置いた。
そして先に入れたアズキソウムシ20 対の死体を取り
出した。同時に直径 1.5 cm の孔を真ん中にあけたボール
紙を古い産卵済みの小豆が入ったシェール内に、小豆に
密着させて置いた。そして、次世代に羽化した虫がこの
孔から出て、同じ容器内の別のシェーレに入れた新しい
小豆上に産卵し、古い小豆を利用しないようにした、こ
のような方法で食べ残りを利用して発育することを防い
d、そして、1 世代間利用する食物体を設定した。そ
の後3 週間間隔で小豆20 g を入れ、その時羽化し終った
古い小豆を取り出した。

寄主と寄生雛の共存する相互作用系は、上記の単独個
体群が平衡密度に達したうえであろうと思われる3 世代以
降、任意の世代に1 回だけ寄生雛を入れた。個体群設定
期から数えて、その世代の寄主が産卵開始後14 日目に
相当する日に、20 対、または1 対だけを単独個体群に加えた。

世代毎の個体数調査

1 世代間に羽化したアズキソウムシの個体数は簡便に
数えることが出来る。調査期間中アズキソウムシの世代
は決して重なることがなく、その世代の羽化が開始され
て後14 日以内にほとんどの死亡し、14 日目に生存してい
たとしても5〜10 助数であり、小さい個体が大部分で腹
部の小さくなった膿病虫のようなものばかりであった。か
れ故、実験個体群設定後、最初は5 週間目の、それ
以後は5 週間毎に飼育容器中の虫数を調べれば、その世
代の羽化虫数とすることが出来た。ただし、相互作用系
の個体群では、その後世代になると、寄主と寄生雛とも
少し生存期間が延長したため、寄主の1 世代の数は次世
代が羽化し始めの直前の、その世代の産卵開始後18日目位に調査した。この場合は全部死亡虫であった。

寄生蜂は初期世代において、はっきり寄主の世代別に分かれて羽化していたが、後の世代においては寄主の羽化期にまで前世代の蜂が2,3匹生存していることもあり、寄主の羽化直前に容器中の生存個体、死亡個体を調べ、その総数を、その世代の羽化数とした。生存虫は容器内に戻し、次世代において、寄生蜂の総数を減じた。

ただし、24世代目と25世代目には、食物供給は全く他の世代と同じように行われたのであるが、個体数調査は行わなかった。

小豆内の死にごもり虫数

二つの相互作用系について、各世代毎に、寄主と寄生蜂が羽化脱出した後の、古い孔のままの小豆を割って、小豆内の死亡寄主数を調べた。寄生蜂が脱出来ずに小豆内の死にごもり虫数が寄主を死にごもりとして取り扱った。寄生蜂が羽化脱出しなかった時も、寄主死亡体は残るが、脱出孔と関連づけて、死にごもり寄主として取り扱う必要はないので、小豆内の死亡寄主数から除いた。さらに、寄生蜂に寄生されたことによって死亡したのではない死亡寄主数、つまり、寄主が発育途中で死亡した数を調べたが、一つの単独個体群について、小豆を同じ様に割って、死亡寄主幼虫数を調べた。

死にごもり虫数と羽化脱出した寄主と寄生蜂数を加えて、寄主の始めの密度とした。

2世代間のアズキソウミの増殖曲線と増殖力の変化についての調査

アズキソウミの増殖曲線を調べるため、個体群設定と同時に、個体群設定及びグループの虫を使って調査した。また世代を経過するにつれ、増殖力の変化が起こるかどうかを調べるため、単独個体群の一つから8世代目に生存虫を取り出し、1世代飼育後増殖曲線を調べた。

羽化期盛期の生存虫を取り出し、1対につき、約1gの小豆の割合で、小型ガラスびんに入れ、1日産卵させた。

1世代飼育後、その小豆より羽化脱出した成虫を産卵後21日目までに羽化脱出した個体（羽化の早い個体）と、産卵後25日以降に羽化した個体（羽化の遅い個体）とに分け、それぞれ2対、4対、5対……として、一度に5gの小豆をとりシェーラーに入れ、次世代に羽化してくる成虫数を調べた。

Fig. 1. Generation to generation fluctuation of the population density in host-parasite interacting systems and parasite free systems

Po,a,b,c,……mean respective populations, where ←→ is the host population and ○○○○ is the parasite population. P 20 and P 1 indicate the introduction of parasites of 20 and 1 pairs, respectively.

199
結果

個体群の変動

単独個体群と相互作用系の各個体群について、世代間の変動を示したもののが図1である。

単独個体群の個体数は、各々の個体群間で多少の相違が見られるが、3世代目からは割合安定した密度を示す。各々の個体群の平均個体数は第1-aの表に示す通り、その平均値にはほとんど大きな差はない。もっとも、個体群dなどでは、個体数は増減をくり返しながらも、少しずつ増加する傾向が認められた。

このように割合安定した密度を示す単独個体群に寄生蜂20対を入れた相互作用系では、寄生蜂を入れた直後の2、3世代は不安定な変動を示すが、寄主個体群の密度は、平均840前後から、平均315前後に低下する。寄生蜂個体群の密度は各個体群で異なる（第1-b表）。

単独個体群の変動結果から予想されるアズキソウムの増殖曲線

単独個体群の変動結果から、寄主のある世代の虫数（H_n）と次の世代の虫数（H_n+1）の関係を世代順に直線で示せば、図2である。

この図から、各個体群の長期世代にわたる増殖曲線を予想すると、実現密度内では、山型ではなく、むしろ飽和型となる。

Table 1. Steady population densities in parasite free systems and host-parasite interacting systems

<table>
<thead>
<tr>
<th>Population</th>
<th>Generation</th>
<th>Mean host density</th>
<th>Population</th>
<th>Generation</th>
<th>Mean host density</th>
<th>Mean parasite density</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3th-9th</td>
<td>604.1</td>
<td>e</td>
<td>28th-35th</td>
<td>211.8</td>
<td>263.8</td>
</tr>
<tr>
<td>b</td>
<td>3-34</td>
<td>661.3</td>
<td>f</td>
<td>23-32</td>
<td>308.0</td>
<td>326.5</td>
</tr>
<tr>
<td>c</td>
<td>3-9</td>
<td>837.3</td>
<td>h</td>
<td>16-35</td>
<td>418.6</td>
<td>190.1</td>
</tr>
<tr>
<td>d</td>
<td>3-34</td>
<td>897.9</td>
<td>i</td>
<td>13-35</td>
<td>288.2</td>
<td>232.0</td>
</tr>
<tr>
<td>e</td>
<td>3-23</td>
<td>776.3</td>
<td>j</td>
<td>16-35</td>
<td>312.2</td>
<td>200.3</td>
</tr>
<tr>
<td>f</td>
<td>3-12</td>
<td>858.7</td>
<td>k</td>
<td>4-35</td>
<td>342.6</td>
<td>243.3</td>
</tr>
<tr>
<td>g</td>
<td>3-6</td>
<td>761.7</td>
<td>l</td>
<td>6-35</td>
<td>316.7</td>
<td>198.7</td>
</tr>
<tr>
<td>h</td>
<td>11-26</td>
<td>817.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>3-15</td>
<td>824.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>3-12</td>
<td>861.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>3-15</td>
<td>849.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Relation between adult densities in the succeeding two generations of the azuki bean weevil
2世代間の増殖曲線と増殖力の変化

単独個体群から抽出したアズキソウムシ成虫を用いて、2世代間の増殖関係を調べたのが図 3 である。

この場合、増殖曲線は高密度帯が著しく低下する山型の曲線を示す。また、1世代目の増殖力よりも8世代目の増殖力が大きいっている。

同一世代内でも、羽化の早い個体の増殖力と遅い個体の増殖力とに差があり、羽化の早い個体の方が増殖力は大きい。

相互作用系における寄主の増殖曲線

相互作用系における寄主の増殖曲線は前世代の寄主体密度
（H_{n-1}）とその世代の寄主体の密度
（H_n）との関係で示される。寄主体密度が安定化した直後に20対の卵を入れた相互作用系Kと1の調査結果を示したものが図4であるが、いずれも曲線を示す。H_nは厳密に述べると寄主体密度数である。そこで、寄主単独個体群eの幼虫死亡数を調べ、幼虫期の寄主体数を相互作用系のそれぞれと比較するため、幼虫を示した図3に示した。この二つの相互作用系と単独個体群のプロットを比較すると、ほぼ同じ曲線に乗るように思われる。先づに示した図3は成虫間の増殖関係を示したのであるが、図4は成虫と幼虫間の関係を示しているとは勿論である。

考察

単独個体群の個体数変動を支配するアズキソウムシ
の増殖曲線

内田（1952, 1953）はアズキソウムシの増殖曲線は极大

Fig. 3. Relation between parental density and progeny density of the azuki bean weevil

Fig. 4. Relation between the final host density (H_n) of the n-th generation and the initial host density (H_{n+1}) of the next generation in host-parasite interacting systems

* and ○ indicate Populations k and l, respectively, after the introduction of parasites.

> indicates Population e at the parasite free system.
値をもつ山型であるが，個体群の変動に及ぼす寄主の山型増殖曲線の影響を大きく評価した。確かに，内田（1941a）と同様に観察方法で増殖曲線を求める，桜大数をもつ山型の曲線が得られる（図3），そしてこの曲線だけから期待される個体数推移は等密型となる。彼は内田（1941b）のアズキソウム個体群の変動がこれを実証するものであるとした。しかし，この実験結果が山型の増殖曲线を実証するものであるとは間違に判断しない得ない。故に，内田の個体群の推移理論から考えて，アズキソウム個体群が二世代に利用しうる食物量は，厳密に一定ではなかった。というのは，寄主密度が低い初期世代では，残した食物量が次世代に利用されるから，そのため，その次世代では，密度が高くなりすぎて密度効果が強く働き，次にその世代では，密度が減少する。このような変動がくり返されて行くものと思われる。そしてあとも上に山型の増殖曲线から期待されるような密度推移を現出させると考えられる。

筆者は一世代に利用される食物量を一定にして，個体群変動を調べたが，図1および図2にあるように，長期世代にわたって，図3から予想されるような激しい振動が現れなかった。そしてこの増殖曲線は山型ではなく，むしろ飽和型であった。このようにアズキソウムの2世代間の増殖曲線は山型となり，長期世代にわたる個体数変動結果から求めた増殖曲線は山型増殖曲線の極大値に近い密度に飽和点をもつ飽和型増殖曲線となる。この増殖曲線の型のちがいはこのような原因であると考えられる。筆者は実験個体群の変動は藤田の実験にも応用しうる個体群である。筆者の2世代間の増殖曲線を求める実験でも短かった内田（1941b）の実験では，オトモ（高さ，1.8cm，直径8.5cm）を用いているので，空間は筆者の中等世代には実験で用いた空間（6cm×18cm×25cm）よりもはるかに小さい。この点は個体群における増殖曲線の差を生じているかもしれない。第2に年令分布の違いが作用しているかもしれない。山型世代の増殖曲線を求める実験では，羽化直後の個体はばかりを用いて，一定にシャーゼを入れて産卵させている。長期世代にわたる個体群では，年令は一週間間にわたり変化，産卵は更に長期間にわたって行なわれる。

そこで，個体群が占める空間の大きさと年令分布が集団しているか，分散しているかを組合わせて，増殖曲線の変化を考える必要がある。小空間で年令分布が集中している場合には，寄主密度が高くなるにつれて，成虫群の干渉が高く，交尾行動と産卵行動の妨害が激しくなるであろう。また産卵された直後の卵と成虫の接触で卵の死にが阻害されるであろう。そのため，高密度部での未死化卵が非常に多くなる（内田，1941a）。そして，小豆内の競争はむしろ減少し，次世代の成虫の大きさは中間密度よりもかなえって高密度部で大きくなる（内田，1941a）。その結果として山型の増殖曲線があらわれる。年令分布が分散している場合には，交尾，産卵行動は同・異世代的な互いに生繊えが少ないため減少するであろう。しかし，成虫卵と卵の接触が長時間にわたって行なわれると，一番つまり易い産卵卵の接触回数が年令分布集中の場合より少ないと思われる。大空間，年令分布集中の場合には，成虫の交尾行動の妨害は空間が大きくなるために少なくなるであろう。産卵行動に関しては，年令分布が集中していると，小空間の場合と同じし豆表面積であるならば同じ様に干渉が起るであろうが，産卵外行動が他の大空間でも行なわれるため，小空間より少なくなるであろう。また，卵と成虫の接触頻度も少なくなるであろう。それ故，大空間年令分布集中の場合，更に密度部での低下が少なくなる。大空間，年令分布が分散している場合には，産卵行動，交尾行動などの妨害は多くなり，成虫間競争は上のどの組合わせの場合よりも少なくなるであろう。そのために，飽和型の増殖曲線に一層近づくことになる。このことは，実際個体群中の未死化卵が少ないということからもうなずける。しかし，小空間範囲での変動があらわれるのは，アズキソウムの増殖曲線が飽和型であるとはいい切れないものである。しかし，筆者の実験個体群の変動は藤田，内田（1952）が示した桜大数をもつ山型の増殖曲線から予想される個体群変動を示していないと述べることは出来ない。高橋（1959）は年令分布と空間の大きさを組合わせて，増殖曲線が変化することを示し，この場合，米蛻中でのスミアナナムガ Cadra cautella （Walker）卵の共食を利用し，年令分布が広がりによって極大値が低下すること，高密度部の上昇により，飽和曲線に近づくことを示している。しかし，アズキソウムの場合，卵と成虫間の競争の機構は確かに示されていないため，増殖曲線の変化がどのような機構で起こるかはわからない。

空間の大きさと年令分布を考慮した2世代間の増殖曲線実験密度範囲ならびに飽和型であるとする，それが示す個体群の変動が完全に説明を得られるであろうか，たとえば個体群では，寄主の密度が世代を経ると共に上昇している（図1と図2）。年令分布が段々広がって行くと仮定すると，高橋（1959）の指摘したような異なる年令群の共食が起らなければ，密度が上昇すると考えることが出来る。また，2世代目の増殖力よりも8世代目の増殖力が大きくなっていることも考えられる（図3）。しかしこの増殖力の変化は，実験条件の完全な一致や，アズキソウムの大きさなどの問題があるため，世代を数えることによって説明的な性質が変化しているとはいい切れない。だが，同一世代内でも，単に羽化

---

Vol. 21, No. 5-6 日本生態学会誌 Dec., 1971
の早い個体と遅い個体というだけで、増殖力に差がある（図3）。この個体群の小豆供給は虫の羽化してくる以前に1回入るだけであるため、早く羽化した個体が優先的に小豆を食べると考えられる。羽化の早い個体は摂食量が多いため、体は大きくなり、増殖力も大きくなるであろう。そうすると累積的効果として、羽化の早い個体の増殖力が大きくなってくるかもしれない。

相互作用系の寄主個体群の増殖曲線
内田（1953）と渡辺（1950）は寄主の集団の密度を羽化した寄主数と寄生蜂数との合計とした。そして、通常先に幼虫によって死亡する寄主数を死亡数とし、5％位であるとした。前報で述べたように、ゾウシコカゴネコバチは、3令から前蛹までの発育期のアズキソウム幼虫に寄生することが出来る。この3令以後に死亡した寄主幼虫は、死亡原因にかかわらず、個体として残る。本論文では、寄生蜂が脱蛹した場合の死亡数を計算して、死亡寄主数を死亡ごふと呼ぶ。死亡ごふを含めて寄主の密度を示すことは、相互作用系の寄主の増殖力、寄生蜂の寄生能力を評価する上に重要である。3令以後の死亡寄主数を寄主の密度加会に加えられることは、寄生の対象となった寄主幼虫数が明らかとなることである。

寄主の死亡の密度（H₃）と次世代の寄主のはじめの密度（H₀）とは関係は飽和曲線で示される（図4）。このことは、単独個体群のアズキソウムの増殖曲線が飽和型で示されることからも当然予想されることである。

相互作用系の寄主個体群では、寄生蜂によって、寄主密度が低下する。また発育の早い寄主が寄生蜂によって取り残されているであろうか、単独個体群よりも増殖力が低下しにくいかも知れない。そこで、相互作用系の個体群増殖を考える場合、寄主の増殖曲線を飽和曲線と考えてその傾向がないと考えられる。

ま と め
アズキソウムとゾウシコカゴネコバチを用い、30℃、70％R.H.、1世代利用しこの食物量を一定にして、アズキソウムだけの単独個体群と寄主寄生蜂が共存する相互作用系のそれぞれの個体群増殖を調べた。そして、個体群増殖に及ぼすアズキソウムの増殖曲線を調べた。

単独個体群の長期世代にわたる個体数増殖結果から、アズキソウムの増殖曲線は飽和型であることが示された。ところが、2世代間の増殖曲線は山型である。このように異なる結果が得られた原因は個体群の利用空間の大きさと、年齢分布の違いとから考察した。

しかし、単独個体群では小種群の変動や個体群によっては、世代の経過に伴って密度の上昇が認められたが、これらは単純な飽和型増殖曲線のあてはめだけでは説明出来ない。そこで年齢分布の拡散や増殖力の変化などについて検討した。

相互作用系の寄主の増殖曲線を調べるため、寄主のはじめの密度を調整した。ここに述べる寄主のはじめの密度とは、羽化脱出寄主と寄生蜂、そして寄主の死亡ごふを合計したものである。ある世代の寄主の終わった密度と次世代の寄主のはじめの密度の関係は飽和曲線で示された。

このように、比較的広い空間の中では、単独個体群でも、相互作用系の個体群でも、寄生個体群の変動を左右するアズキソウムの増殖曲線は基本的には飽和型である。

文 献