群集係数による群集の層化について（承前）

東北地方水産研究所八戸支所

Hachinohe Branch, Tōhoku Regional Fisheries Research Laboratory, Hachinohe

Ikuo HAMA

4. 種数と近接率 種数の共通性を表す方法として従来末の如き指数が用いられた。即ち質的要因の一部の総種数と共通種数との記載化である。今、比較される2地域の種数をs1, s2（但しs1≧s2）、共通種数をcとすると

1. c/s1
2. c/s2 野村24の標準共通率（standard common ratio）
3. 2c/(s1+s2) 或は c/(s1+s2) JACCARD の共通係数（Gemeinschaftskefficient）
4. 1/2(c/s1+c/s2) 正宗22の相関率（percentage of affinity）
5. c/√s1s2 = p 大場23の係数の親近（近接率）

これ等の指数の間には

\[\frac{c}{s_1} \leq 2c/(s_1+s_2) \leq p \leq \frac{1}{2} \left(\frac{c}{s_1} + \frac{c}{s_2} \right) \leq \frac{c}{s_2} \] (10)

の関係がある（その1例はFig. 6）。この関係からpがこれ等の指数の中で最も中庸を得たものであることが判る。又、実際にpが生物地理学的に有効であることが示された（4,5）。

本例のケガミ群集において（Table 4）相談なる層の間のpの変化はrの変化に極めてよく似ている（Fig. 2）とよってpとrとが如何なる関係にあるかを吟味した。即ちrとp（Table 2, 4）との間ではr = 0.930, p = 9600で直線性は疑わしい（危険率0.01c < 0.05）。rはpに対し僅かに上に四角な曲線を描く様に見えるので

Vol. 5, No. 1
JAPANESE JOURNAL OF ECOLOGY
July, 1955
Fig. 6. Examples to show the relation between various indices concerning the commonness of species. $a: c/s_2$, $b: 1/(c/s_2 + c/s_3)$, $c: p$, $d: 2c/(s_1 + s_2)$, $e: c/s_1$, $f: a case of c=1 and s_2=1$, $g: a case of c=4 and s_2=5$. The curves show the values of various sorts of the ratios against the value of s_1.

$$r' = \log(r+1) = mp + n$$ \hspace{1cm} (11)

を想定すると，r' と p との間に，$r_{exp} = 0.917$, $\eta_{exp} = 0.927$，即ち有意水準 5% でも直線性を否定しない。（11）において $p = 100(\%)$ の時 $r' = 1$ なる仮定を設けると $n = \log 2 - 100m$ となり，結局 （11）は

$$\log(r+1/2) = m(p-100)$$ \hspace{1cm} (12)

(12) から $m = 0.00822$ と推計される。又，一方において（11）の回帰は充分有意であり（$\alpha < 0.01$），$m = 0.00835$ と推計される。（12）よりの m の値と（11）よりのものとの差は有意でない（$\alpha > 0.5$），よって r と p との関係は（12）で規定されるものとする（Fig. 7）。

(12) と (8) から

Table 4. Number of common species (c) (above the diagonal), number of species (s), and coefficient of closeness (p) (below the diagonal), between the layers in the *Ostrea spinosa* community.

<table>
<thead>
<tr>
<th>c</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>33.3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>8</td>
<td>3</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>15.9</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14.4</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13.8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

$$d' = \log(D-d) = mp + n'$$ \hspace{1cm} (13)

が導かれる。但し，$D = k + 1$, $n' = \log 2k - 100m$。

定数 D, m, n' に上の推計値を入れれば

$$d' = \log(1.862 - d) = 0.00822p - 0.597$$ \hspace{1cm} (14)
各層の種数 (x) そのものは a 及び b1 と密接な関連があることは Fig. 9～10 に見られる通りであるが, a を群集の複数指数として解釈することは適当ではない31). 併し, 本例で a 及び b1 と s との間は近似的に
\[\log g = q \log n \]
\[\sqrt[3]{v} = \frac{v - b1}{u} \]
の形で表される. ここに q, g, u, v は定数である. q = 0.684, g = 0.542, u = 1.169, v = 5.513 と推計された.
この様な単純な回帰的存在は群集において演ずる要因である程度 a は b1 によって推測することになる. (15) 及び (16) から
\[\frac{v}{u} - b1 = \frac{\sqrt[3]{v}}{u} = \frac{q}{2}, \quad G = \log^{-1} g \]
(17)
(15) 及び (16) で得られた定数の値を用いると多くの食違いはないが (17) が b1 - a 関係に適合する
ことがわかる (Fig. 10). 以上は特殊な一動物群集における関係を示すが, 一般的に適用する
かどうかは判断できない. しかし 1 2 を一定すれば a の大小によって種類に増
減のあることは等比級数法則の性質であるから, この意
味において特に a が種の代表値としては重要である
よう.

5. 群集係数 (community coefficient) 以上で群集構
造の変動的性質が a, b1, h の 3 つの指数によって大略測定
されることが示された. よって (7) に R を計算した (Table 5). R の水準による変化をみると端端即ち I と
IX で高く, 内側に向って減少し, III 及び VII は最低と
して再び上昇し, V において再び最高となるV形の曲線
を描く. 即ち群集の総計的測定値は共通度の高
い層が I, V, IX とあって, それ等を中心としてそれ等
に遠ざかるに従って中心との共通性が低下し, III 及び

Table 5. Standardized values (ta, tb, th) of a,
b1 and h, community coefficient (R), and the
level of each layer, in the Ostrea spinosa
community.

<table>
<thead>
<tr>
<th>Layer</th>
<th>ta</th>
<th>tb</th>
<th>th</th>
<th>R</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2.76</td>
<td>1.96</td>
<td>-0.77</td>
<td>3.46</td>
<td>163cm</td>
</tr>
<tr>
<td>II</td>
<td>2.25</td>
<td>0.85</td>
<td>-0.85</td>
<td>2.22</td>
<td>138</td>
</tr>
<tr>
<td>III</td>
<td>-0.39</td>
<td>0.05</td>
<td>-0.64</td>
<td>0.75</td>
<td>113</td>
</tr>
<tr>
<td>IV</td>
<td>-0.31</td>
<td>0.25</td>
<td>-0.75</td>
<td>0.85</td>
<td>108</td>
</tr>
<tr>
<td>V</td>
<td>-0.38</td>
<td>0.18</td>
<td>-1.53</td>
<td>1.69</td>
<td>75</td>
</tr>
<tr>
<td>VI</td>
<td>-0.38</td>
<td>0.14</td>
<td>-0.77</td>
<td>0.87</td>
<td>100</td>
</tr>
<tr>
<td>VII</td>
<td>-0.44</td>
<td>-0.03</td>
<td>-0.07</td>
<td>0.77</td>
<td>75</td>
</tr>
<tr>
<td>VIII</td>
<td>-0.63</td>
<td>-1.56</td>
<td>-0.91</td>
<td>1.91</td>
<td>50</td>
</tr>
<tr>
<td>IX</td>
<td>-0.45</td>
<td>-1.33</td>
<td>-1.52</td>
<td>2.17</td>
<td>29</td>
</tr>
</tbody>
</table>

VII ではそれ等をはさむ2つの中心の影響が共存して中心
との相似性が低くなり, 両中心の間の転移点となってい
ることを示すものである. 換言すればこの地域における
ケガキ群集は V を代表的な層としてその下に拡まり,
その群集構成は III 及び VII に及んでいるが, III 及び
VII を転移点として III は VI に上昇する他のタマキビーアマ
層集 (Littoriva brevispina-Nerita japonica stratum)
に移るが, III では下層集とも混在し, VII から
下ではヤドカリ層集 (hermit-crab stratum) に移行す
るが, 勿論 VII はヤドカリ層集の影響をも受けてい
ることを示すものである. この様に R は各層相互の選択的関
係や各層内部の変動状態を示し, 群集の分布
の様様を把握し易し, 一つの群集から他の群集に移行す
る転移点を明瞭に示すものであることがわかる.
R は 1 個の数値であるが取扱に便利で, R を物理
的環境要因と共に考察することによって群集の性質を
一層明確にしめることが出来る. 例えば上記の R を各
層の水準と対比させると, 各群集の空間的分布の極
めて明確な像を得る (Fig. 11). 両ケガキ群集は同
じ高度に 75cm に拘がっているが, 113cm 以上はタマキビ
ーアマ層集との混合層あり, 75cm以下はヤドカリ群
集との混合層をなすため, 純粋なケガキ群集と考えられ
るのは IV - V と VI と (ca. 100 - 108cm) の間で狭い層であ
ることがわかる. VIII, IX はいずれもヤドカリが優占す
る層で R による区分とも一致するが, I, II は前者はタ
マキビ, 後者はアマガイが優占する層で, ヨリカレイを重
視すれば R による判断とは違った層であることがある. これ
は優占種の再現を重視する層別に必ずしも妥当でないこと
を示しており, 植物群落においても NUMATA32) はこ
のことを指摘している. 著者は上述した様に統合的立場
から R による判断を正当と考える.

Fig. 11. Relation of community coefficient (R) with the water level above the ebb
tide mark. Roman numerals denote the
layers.

内海33) は潮間帶生物群集を Xerobiose, Hygrobiose,
Hydrobiose の 3 層に区分したが, 本例も各層の水準より
見て明にこの様な 3 層として認識し得るであろう. 但し
内海の例示した動物の種類の区分とは多少相違している.
即ち本例ではタマキビーアマガイ層集を Xerobiose,
ベガキ層をHydrobius, ヤドカリ層をHydrobiopsisと考えることが妥当であり、この階段における各層の境界もFig. 11から大体中間線上75cm附近及び113cm附近とすることが出来る。

例 II

群集の変異の測定は例 I の様な地域のある時、時間的な変異の例例えば季節変異或は週期的な変異等にも応用することが出来る。今季節の変異への応用について1例を示す。

浜井・大沢1)は小川の池のプランクトンの季節的変異を観察し、この場合、各生態層の棲息密度の平衡は2段階であり優占種を含む優占群種と劣位種より成る劣位種群との2つの平衡が共存し、各群について等比数等則が存在している（Table 6）。但し11月のものは1群の平衡である。従ってa及びbの値として每月2個ずつの値を考慮しなければならない。但し11月のものはaは群同士同一とし、bは月の劣位種群の第1位が全体の第6位に当っているから、この月も第6位の推計値をとった。

Table 6. Constants of the law of geometrical progression in the plankton community in Pond Oike.

<table>
<thead>
<tr>
<th>Month</th>
<th>Dominant group</th>
<th>Subordinate group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b1</td>
</tr>
<tr>
<td>September</td>
<td>0.369</td>
<td>5.238</td>
</tr>
<tr>
<td>October</td>
<td>0.3033</td>
<td>5.277</td>
</tr>
<tr>
<td>November</td>
<td>0.1039</td>
<td>4.412</td>
</tr>
<tr>
<td>December</td>
<td>0.4774</td>
<td>5.805</td>
</tr>
</tbody>
</table>

Table 7. Coefficients of correlation (r) between population densities of genera of each month, and the distances (d) between the points (A1, A2, A3) in Table 8.

Table 8. Coefficients of common factors (A1) and communality (A2).

Table 9. Number of common genera (c) and coefficient of closeness (p) in the plankton community.

Table 10. Standardized values of a and b (f) and community coefficients (R).

Fig. 12. Monthly change of community coefficient (R) in the plankton community.

別個の群として認められるが、これは9〜10月が総括の優占する群集であり、11〜12月は総括の優占する群集であるとしてこの差を認めた浜井・大沢1)の観察に一致する。この2群の区別は相対なる月の間の、または点(A1, A2, A3)の間の距離dによっても認められ、dが関関係（8）で表わされることは例 I と全く同一である。dと関係は（11）で表わされる傾向は見られないが充分有意ではない（Table 9）従ってdと関係も有意には認められない。しかしこれは観察月数が少ないためと思われる。又、総属数もa, bにはよらない様に見えるが、之等観測数が小さいから断定は下し難い。よって総属数やp等の因子は前例に収容特に考慮しないことになる。Aの値から（6）によって共通度を計算すれば（Table 8）、月による変化は殆ど認められない。即ち、このhの僅かな差は全く無意であって、棲息密度間の相関を支配する共通因子は各月とも同程度である。その変異を問題とするに当らないものである。よって群集係数の計算には恵を無視し treff に無視する。若し之を加えたとしても（この場合標準化は微細なる差を拡大することによって無意味である）各月の群集係数間の相関的関係には殆ど影響を及ぼさない。各の群集係数 Rの変化を見れば（Table 10, Fig. 12）、群集が漸進的に推移することがわかる。そして10月
の群集でないことも考えられる。

総括

1）動物群集の量的性質の中、群集内における各構成分種間の平均値は元数の等比数値法（logy = b_1 + a(x-1)）で表される。yは各構成分種の棲息密度、xは順位、「b_1及びaは定数」によって表われされ、a及びaをその状態を測る指標となる。aは生存力の強さを示し、b_1は優占種の棲息密度の対数である。

2）一つの透地を一つの層（小区間）に分けた場合、層間の量的関係は構成分種の棲息密度間の相関係数行列より因子分析法によって導かれる共通度（community, K）によって夫々の層を他の層との関連において測ることが出来ること。

3）各層内の種数は主としてa及びb_1により、層間の共通度の関数になる（共通度の係数の組を空間の点とした時、その点間の距離）と単純な関数関係で結ばれることは明確である。種数及び共通度に含まれる因子は上述の1）及び2）の方法に把握して得られる。

4）以上のことにより、a, b_1及びhの3つの指数で群集の量的性質の大半は測定可能である。よってこれ等の指数をK、その平均値をK、層内の数をm、σ_kをΣ(K-K)/nとし、t=(K-K)/σ_kと置いてa, b_1, hに対するtの値から

R=\sqrt{(\sum a^2+\sum b_1^2+\sum h^2)/2}

で定義されるRを群集係数（commonality coefficient）と名付け、之をもって各層の群集を代表する生態価とすることが出来る。

5）元数の観測した三角のケガキ群集及び浜井大沢の小池のプランクトンについてRが検証され、有効な結果が得られた。

文献

記

I. 総会議事 (1955年4月第2回大会にて)

1) 一般事務

○承認事項

(1) 学会会費は地区会で徴収する。地区会への還元は5分であるが、全地区会が発足するまで1人分20円とする。

(2) 通称として学会の委員を全国委員、各地区の委員を地区委員と呼ぶ。

(3) 全国委員の欠員補充は原則として次年度、特殊事情がある場合は地区会に前座させる。

(4) 大会講演は標題だけを会誌のにせる。

(5) 生態学用語案件作成小委員会を設けて用語をケースアップする。

○議決事項

(1) 大会運営費として学会から1万円補助する。

(2) 来年度大会は仙台において行う。

2) 会誌編集事務

○承認事項

(1) 会員及び事務局用以外には文部省、国会図書館に会誌を寄贈している。

(2) 第5巻第1号より別売30部を原著者に無料配布する。

(3) 会誌は国際オーシャンと2,300部交換する。送付先は公表する。

(4) 会誌発行部数は第5巻第1号で2400部に増やす。

(5) 会員は他誌にのせた著者の200字以内の抄録とし学会に送り会誌に掲載する。

日本生態学会昭和29年度収支決定報告

受入の部

会費(昭和29年度分) 407,400円

同上(昭和30年度分) 60,703円

同上(昭和31年度分) 600円

45