古賀庸憲

この自由集会の趣旨は次の二つであった。第1は、学問的統合の必要性と可能性である。生物多様性科学に含まれる分野は、多様性の創出と維持を考えると極めて広い。そのような分野の知見の統合は必要なのか？可能か？もし可能ならどうすればよいか等である。第2は、京都大学生態学研究センターの役割についてである。センター設立の目的は、生物多様性と生態系の機能解明と保全理論の構築であるので、統合に貢献できるはずではないか？そこで、センターを研究の場とする（した）3名の演者による発表を基にそれらが議論された。演者3名はなるべくバラバラな材料とテーマの研究のものを選び、それらがどう統合できるのかを考えるのだ（山内氏）。

最初の演者は、山内氏は、植食者の影響が植物の様々なパフォーマンスを上げること（grazing optimization）を説明する例しその仮説のうち、nutrient cyclingについて理論的アプローチの解析結果を発表した。先行研究では、grazing optimizationの進化の基準として、一次生産量とバイオマスが増加するかに注目していた。しかし、進化を考えるのであれば次世代に残す子の数に着目すべきである、そのためには植物の成長のスケジュール、即ちフェノロジーの最適化を考慮すべきである、というのが山内氏の着眼点である。

一年生芽を仮定すると、植物はシーズンの最後に繁殖器官を最大化すべきである。そのためには、シーズン途中にある時期fまでは成長にのみ投資し、f以降は繁殖
植に投資を切り替え（\(\tau = \text{switching time} \)）、繁殖器官を緊急的に伸長させるが適応的とする解析結果であった。そして、grazing optimizationが起きる条件は次の3つで、
(1) 海洋の背景が重要で、元々一定の捕食圧の環境で生産化してきた植物種でのみ起きる。(2) 土壌中の栄養不足条件が不可欠で、それは、植物が捕食されて捕食者が排泄物を土壌へ還元することにより、植物にとって栄養が再び利用可能になり、より長く成長できるからである。(3) 植物間の競争も重要である。これでは土壌中の栄養を早めに伸長するほど、周囲個体が使うはずの栄養が自分のところに流れ込んでくる（栄養が多いところから少ないところに流れる）という条件について、grazing optimizationがより強まる。また、上記1〜3の条件は、いずれもの遅延とリンクしており、\(\tau \)が後にずれるほど、grazing optimizationが顕著になった。即ち、植物のフェノジーがgrazing optimizationにとって必要な役割を果たしているということであった。本研究のポイントは、種間相互作用、栄養の流れ、生態系機能（一次生産の増加）の3つが、進化を考えることにより統合されることだ。

質疑応答では、菊沢氏が、山内氏のモデルはuptakeに依存すると仮定しているが、実際にはuptakeは起こらず閉鎖系であり、地下部まで考慮すればgrazing optimizationやovercompensation（過大補償）（中村氏の発表）は起こっていないはずと指摘された。この点については、一年草と多年草、樹木で世界が異なるかどうか等の説明がなかったこともあり、専門外の参加者には疑問が残ったのではなか。

二人目の演者、清野氏は植物の機能から見た多様性（分類的多様性では把握できない多様性）について発表された。熱帯雨林に生育するフモモ科樹木の材密度は、材の機能特性に大きく影響し、成長率や導管系と関係が深い。成長率は材の強さにより異なり、成長が早いと林冠に到達しやすいが耐えやすいという。導管系と材密度の関係の説明はなかったが、古い土壌基質では導管密度が高く導管サイズが小さいのに対し、新しい土壌基質ではその逆がだそうだ。また、無毛のシラスケモがいった葉の特徴は可塑ではなく伝達の形質だという（その後の質疑応答で、形態やサイズによる機能の違いについて次のことが理解できた。無毛タイプは除枝的光合成活性を示すにに対し、微軟毛タイプは陽枝的である。また、森林限界近くでは微軟毛タイプが多くなり、これは乾燥適応と考えられる。樹高が高くなると水を吸い上げる機能が重要になる。導管サイズが大きくなると水路は流路が短く、くずが入りやすくなり、血栓症のような水流の低下が起こりやすい。流量は導管サイズが大きい方が高いが、より長く上げる能力は毛管現象の影響から導管サイズが小さい方が高い。以上のように、分類学的な種に加え種内における機能的分化により、生物の世界は更に複雑化していくのではないかということだ。

三人目の演者、村松氏は博士論文の主要な部分を発表した。植物を介した複数種の昆虫間の相互作用で、その中で形質変化を伴うものがある。昆虫間で植物を通じたプランの間接効果を見いだすことが本研究の売りなんだ（朝田氏からは植物を介したプランの間接効果についての研究は他にもあるはずと指摘があった）。第1部は間接効果の説明で、次のような2つのケースはいずれもプランの間接効果だと解釈した。(1) 被食や掟乱が植物に補償成長を引き起こすことにより、若葉などの質の高い未成熟が増加し、別の昆虫に影響を与える場合、(2) 植食性昆虫がハマキやゴールなどの捕食物を作ることで棲み場資源が増加し、別の昆虫に影響を与える場合。第2部はヤナギ上での昆虫間の相互作用についてで、ハマキが羽化して空になったハマキが、アブラムシに生息場所を提供し、さらにアリが同居すること（ハマキがアブラムシとアリに与えるプランの間接効果）、アリが周りの植食性昆虫のハムシ若齢幼虫を排除すること（ヤナギの間接効果）を示した。第3部はタマバエのゴールの影響であった。ゴール形成によりヤナギの頂芽優性が抑制され枝分が伸びることから、ゴール形成はヤナギの補償成長を促進し、ゴールのある枝ではその後に出現する植食性昆虫（アブラムシとハムシ）の密度が増加すること（ゴール形成が植物を介して植食性昆虫に影響を与える：プランの間接効果）を示した。第4部では、洪水による掟乱が、ヤナギの補償成長を促進することにより、植食性昆虫（ハムシ）と捕食性筋節動物（テントウムシとケモ）の密度を増加させること（掟乱が植物を通じて植食性昆虫に、また植食性昆虫を通じて捕食性筋節動物に影響を与えた：どちらもプランの間接効果）を示した。以上の内容から、プランの間接効果が生じるためには、植物に補償成長が生じることが重要と結論し、更に、植物を通じたプランの間接効果が陸上植物上の筋節動物の多様性を促進している可能性に言及した。

質疑応答では、松田氏から、シエットあたりの数で評価していたが全体ではどうなのか？シエット数も増加したかが重要ではないか？という点が指摘されたが、シエット数の変化は調査されていなかった。
古賀耕憲

鶴田氏は山内氏からこの自由集会についての批判的なコメントを依頼された。その内容は、学問と過去の二つについてであった。学問に関しては、まず生物多様性科学を内容で分類された。1) 多様性の維持・共存促進の機構、2) 多様性の生成・起源・歴史的系譜の二つである。そして前者には個体群動態、ニッチ分化と他種共存、生物間相互作用、オプチュア進化過程と中規模種群生物群、食物網の構造と動態、生態系の機能との関連、といった生態学の多くの分野が、今後には着点化、生殖的隔離、突然変異、生活史の進化（ここまでは生態学の範囲）、系統分化、分類学と生物地理、分子系統解析、遺伝子系図、形態形成の進化（Evo-Devo）、ゲノム科学とバイオインフォマティクス等が含まれる。したがって、今回の話は多様性科学のごく一部に過ぎない。現状では生物多様性科学の「統合」が可能な状態ではなく、まず異分野との緩やかな「連携」を図るべきではないかと提案された。これだけ多岐にわたる分野では連携さえも簡単ではないが、これらの分野の研究者が集う場として進化学会があるので、連携を行うためには進化学会を活用し、生態学以外の様々な分野の研究者との討論や情報交換（含共同研究）を行ってはどうかということだ。キーワードが「進化」という点は山内氏も同じである。

組織に関しては、生態学研究センターが、大規模長期的研究の中核として十分機能し、多様性の促進・維持機構の解明に関して一定の成果を上げてきた点を評価された。しかし、多様性の起源、歴史的系譜に関する研究分野が欠けていたので、そのような研究組織との連携が必要で、そのためにはネットワークの中心として機能すべきだと主張された。しかし点は、センターだけではなく生態学会全体に言えることでもある。これまで生態学会員は分子や物質の言葉で語るところを破ったとして、そのような分野との交流を今後進めていくべきなので、勉強してそれを可能にしてほしいという、若い人のメッセージでコメントを繰られた。

総合討論では主に以下のようなコメントが出た。今日の3題の発表内容はそれほどバラバラではないので、この3題ならもっと統合を打つ出るのではないか（松田氏）。センターの役割として、生態学の共通の方法論の確立や、調査が行われているさまざまな生物についての情報の登録したデータベースの作成の必要もない（矢原氏）。データベース化は生態学会の課題ではないか（山内氏）。センターがどうあるべきかにこだわりすぎるより、個々のスタッフが面白いか研究を行うことが重要である（矢原氏）。他に、生態学会大会で適応進化変化のシンポジウムを継続していくべきとの意見もあった。最後に、もう一人のオーガナイザー、川端氏が意見を述べられた。ポイントは次の2点で、1) 多様性が創出され、維持されて初めて機能を持つようになるという一連の流れを、一つの関数で表現することが「統合」の一つの形になるのではないかということである。2) 是、保全のためにある種や群集にとって種多様性が必要な理由を明らかにすることは、社会的にも重要な発信であり、このような研究や発信は、表題板に生物多様性の統合を掲げていなくても、別の角度から維持機構を研究しているということである。

私には、この集会への参加者の体験が、生態学会大会の参加者の中でも、生物多様性の統合に興味のある人と言える。2) 題の発表内容（その分野）に興味のある人に偏っていたように思われた。統合または連携のためのキーワードは「進化」という意見が複数出たも、確かに演者も総論討論で発言された方も、進化を強く意識した研究者が大半に思われた。進化以外のキーワードは存在するのでしょうか？

川端氏の第1の意見のような研究が可能であれば興味深い。研究的理論がそのため到達できるのか、それとも更なる生物データの蓄積を基に初めて産み出されるのか。どんな形で始まるのだろうか。また、本年4年に出版されたばかりの動物生態学新版には「日本と英米とで、生態学の研究者間の交流は盛んだったが、個人レベルの知識や研究の学際性も、生物多様性科学の統合または連携には必要だろ。そうすると、そのような研究は英米で先に始められてしまうのであろうか？総合討論で、生物多様性科学の統合（連携）を行う必要があるかどうか私には分からないが、この自由集会を契機に、日本において新しい魅力的な研究を取り組み始めるとすれば、それはこの集会の成果である。'

（ikoga@center.wakayama-u.ac.jp）