Material and Energy Disposal
— its definitions, derivation, and significance

Hiroshi Mizutani

College of Bioresource Sciences, Nihon University
1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan

ABSTRACT
A concept of material and energy disposal (med) for a benefit is proposed. The argument is based on a unified treatment of material cycles applicable to both biogeochemical cycles and sociogeochemical cycles, in which knowledge, physical inflow, srocks (coined word from stock and process), benefit, and outflow constitute basic elements of material circulation. There are five classes of meds: Direct material and energy disposal (D-med), Extended material and energy disposal (E-med), Total material and energy disposal (T-med), Lifetime material and energy disposal (L-med), and limited Lifetime material and energy disposal (limited L-med). These meds would utilize an extension of the conventional LCA inventory data and may be used for resource productivity and the eco-efficiency. It was found that the meds share many of their characteristics with the mers (material and energy requirements) reported earlier in this journal. Problems associated with the application of the meds to global change, i.e., their relation to global limits, their way of expression, their allocations to benefits, kinds of data to be collected, and data reliability, are discussed. The methodology not only is theoretically fine but also has a potential to accommodate practical realities such as insufficient availability of data and very partial interest of our society in the global life support system, which is desirable as a tool for the evaluation of effect of human activity on global environments.

Key words: Benefit flow, Lifecycle, Material and energy disposal (med), Recycle, Srocks

1. メド
およそ200年前のイギリスにおける産業革命以来、埋没エネルギー資源を大規模に利用することによりエネルギーの制約から解放された人間活動は、20世紀後半になって地球の有限性という制約因子に直面した。そして今世紀、限られた地球生命維持システムとの折り合いをどうやってつけるのかが人類最大の課題となった（Mizutani, 1987, Mizutani, 1999)。Nitta（2003）は、生態工学が目指す目標は地球環境と共存できる人類社会を描ることであると木誌で述べている。
急速に拡大している人類圏が、地球生命維持システムの安定性を崩壊させないためには、人類圏と地球生命維持システムとの間における物質とエネルギーの交換規模、すなわち人間活動にともなう資源・エネルギーの消費と廃棄の規模の大きさが地球限界以下である必要がある。現状の先進国における資源・エネルギーの浪費を踏まえれば、それは特に先進国における物質とエネルギー消費の削減すなわち熱
物質を意味する。そして、これを実現するには、その前提として人間活動を物質収支という観点で正しく把握できなくてはならない。その第一歩が人間活動による個々の製品・サービスの提供に伴う物質収支の定量的把握である。

個々の製品やサービスを提供するに必要な資源とエネルギーをマテリアル・エネルギー・リサイクル（material and energy requirements: mer [マート]）と呼び、その算出の基本は既に報告した（Mizutani, 2003a, Mizutani, 2003b）。ここでは、これに対をなす地球システムへの廃棄による環境負荷をあつかうマテリアル・エネルギー・ディスポーザル（material and energy disposal: med [メド]）の算出について述べる。メドにはマートと共通の事項が多いため、その記述に当たってマートと重複するものの一部について省略した。上記のマートについての報告を併せて参照したい。

まず、メドに関する5つの用語について述べる。それは、D-メド（Direct material and energy disposal）、E-メド（Extended material and energy disposal）、T-メド（Total material and energy disposal）、L-メド（Lifetime material and energy disposal）、限定L-メド（limited Lifetime material and energy disposal）である。なお、ベネフィット、スロックス、アウトフローといった物質循環の用語もMizutani（2003a）に詳しい。

(1) D-メド：ある特定のベネフィットを生じるスロックスから発生するベネフィットを除くアウトフローをベネフィットで接続したものを全体。ベネフィットを生産した結果として直接生じるベネフィット以外の物質とエネルギーであり、一種類のベネフィットだけが生じるスロックスでは、LCAの排出インベントリに相当する。

ベネフィットをbとすると、このD-メドを「ベネフィットbのD-メド」と呼ぶ。ベネフィットが明確である場合、ベネフィットbを生じるスロックスをsとして、「スロックスsの（ベネフィットbを生じるための）D-メド」と呼ぶこともある。D-メドの大きな特徴は、注目するベネフィットを生じるスロックス以外の循環経路については何の特定をしなくても求めることができる点にある。

(2) E-メド：D-メドがLCAの排出インベントリに相当するのに対し、LCAの投入インベントリに相当するものをD-メド（Direct material and energy requirements）と呼ぶ（Mizutani, 2003a）。E-メドは、このD-メドとD-メドを構成する各フローについて地球システムから直接採取し適正に廃棄するところにまで拡張（extend）してスロックスを特定し、それに係わるアウトフローの全てを求めたものである。これらのアウトフローも地球システムに捨てて差し支えない状態になってはならない。ベネフィットの流れについては廃棄の時のみカウントする。

(3) T-メド：ある特定のベネフィットについて、それを生成するスロックスよりも上流のスロックスにおけるE-メドの総和。複数のベネフィットが発生するスロックスでは、そこでE-メドを接分する。ベネフィットを生成する時点までに人類圏から地球システムへ安全に廃棄される物質の総量と考えられる。地球システムに存在する物質のT-メドはゼロとする。T-メドは、注目するベネフィットを生成するスロックスよりも下流の循環経路については特定しなくても求めることができる。ただし、リサイクルのように循環する経路がスロックスの下流から上流に互いに存在する場合は例外であり、その際に考慮すべき下流のスロックスを定める方法はMizutani（2003a）にあるT-メドの場合と同じである。人間のフローの発端、すなわち最初に地球システムから資源を採取する工程から得られるベネフィットのT-メドは、その外的E-メドに等しい。

Fig. 1 Schematic representation of examples of the five kinds of meds for the manufacture-into-A socks

Processes in a rectangle represent raw rocks. Downward arrows stand for the flow of a benefit. Horizontal arrows from socks are for D-med. The recycle process and its upstream process are included within the boundary of the T-med of the manufacture-into-A socks, because the benefit from the recycle process enters into the socks. Note that the unneeded is a benefit by the definition and the waste is shown as a benefit. The difference between D-med and E-med is that, while D-med is the direct outflows (both material and energy), E-med is the material and energy that are properly disposed of in order to provide the D-med and that are needed to properly dispose of D-med to the Earth system. For more details, see the text.
（4）L-メド：ある特定のペネフィットに対して、そのペネフィットの流れを通じて生じるE-メドの全体。複数のペネフィットが生じるスロックスでは、そこでのインフローのT-メドを各ペネフィットに分断する。L-メドを求めるにはそのペネフィットの生産・消費・廃棄に係わる全てのスロックスを特定しなくてはならない。L-メドは廃棄物のT-メドに等しい。

（5）限定L-メド：L-メドの部分集合。取り上げたスロックスをアウトフォロー（メド）を明確にした上で、ペネフィットbの限定L-メドが求められる。

以上5種のメドはどれも、それを求めた結果は物質・エネルギーとそれらの量のリストで表現される。メドの違いは主に、どのスロックスに注目するかというパウダーガイディング設定の違いに表れる。Fig.1は、一つの素材から二種の製品がつくれられ、リサイクルモードが図示するケースを例にとって、5つのメドの違いを示したものである。

ここで名を付けた横矢印がD-メドを示し、二点錕線がE-メド、破線はT-メド、点線がL-メド、一点錕線が限定L-メドのパウダーガイディングを示す。T-メドのパウダーガイディングは通常、上流の工程のみを含むが、図では、下流に位置するリサイクル工程からペネフィットが製品Aを製造するスロックスを流入するため、リサイクル工程を含む上流に位置する使用スロックスもパウダーガイディングに含まれている。

2. メドの特徴

まず、リサイクル経路のない場合を例にとってメドの特徴とL-メドの算出法について考察しよう。Fig.2は、採取から廃棄までのライフサイクルを、すなわちペネフィットの流れに係わるスロックスだけを含み、それのようなスロックスを漏れなく全て含んだ集合を通過して各スロックスが一種類のペネフィットを生じる一連のリサイクル経路がないケースを示す。

この図、各ペネフィットのT-メドは、それぞれが生じるスロックスとそれより上流の各スロックスでのE-メドの総和となる。すなわち、スロックスへのインフローをペネフィットとして生じる上流におけるT-メド、さらに上流のT-メドと次々と通り、資源の採取に到るまでのアウトフローの和となる。例えば、販売店に並ぶ製品のT-メドT[製品（物流後）]は、製品のペネフィット量をQₐとし、単位量のペネフィットを生じるのに必要なE-メドをEで表すと、以下の式で示される。

\[T[製品（物流後）] = T[製品（加工後）] + Qₐ \cdot E[物流] \]

同様に加工工程終了時の製品のT-メドは次の式で表される。

\[T[製品（加工後）] = T[素材] + Qₐ \cdot E[加工] \]

こうして、次々とライフサイクルを上流に追ると、やってT[鉱石]を知ることが必要となる。これは、T[鉱山]とQₐ \cdot E[採掘]との和に等しい。ここで、定義により、地球システムによる天然の濃集などのスロックスで生じるメドはゼロであるから（T[鉱山] = 0）、T[製品（物流後）]に関して次の式が成り立つ。

\[T[製品（物流後）] = Qₐ \cdot (E[採掘] + E[精錬] + E[加工] + E[物流]) \]

Fig.2: Examples of scoreses and of their resultant benefit flow and E-meds from resource extraction to disposal of unneeded material

Processes in a rectangle represent scoreses. E stands for E-meds. Downward arrows indicate the flow of a benefit. Horizontal arrows (both inflows and outflows) relate E-meds. T represents T-meds. For more details, see the text.
このように、あるペネフィットのT-メドは、それより上流に位置するスロックスのE-メドの和となることから、廃棄物のT-メドは、そのペネフィットのL-メドとなる。

3. 水平リサイクルにおけるメド

リサイクルの経路がある時には、そのスロックスからのメドも考慮する必要がある。まず、水平リサイクル、すなわち、使用済みのもののが再び同じペネフィットを提供する場合を考えよう。今、簡単のために、Fig.3 (b) に示したリサイクルをふくむ経路があり、不要物の中の割合で \(r (0 \leq r \leq 1) \) だけがリサイクルに回るとする。

ここで、素材のT-メドを \(T_1 \)、製品のT-メドを \(T_2 \)、不要物のT-メドを \(T_3 \)、廃棄物のT-メドを \(T_4 \)、再生品のT-メドを \(T_5 \) とし、図で数字を付したEは、それに対応するスロックスが単位量のペネフィットを生ずるために排出されるE-メドを示すとすれば、次の式が成り立つ。

\[
T_1 = (1 - r) \cdot Q_B \cdot E_1 \\
T_2 = T_1 + (1 - r) \cdot Q_B \cdot E_2 \\
T_3 = T_2 + T_3 + Q_B \cdot E_3 \\
T_4 = (1 - r) \cdot (T_3 + Q_B \cdot E_4) \\
T_5 = r \cdot (T_3 + Q_B \cdot E_5)
\]

したがって廃棄物のT-メドである \(T_4 \)、すなわちこのペネフィットの生産に互いのL-メドは、リサイクルがある場合に上式から \(Q_B \cdot [(1 - r) \cdot (E_1 + E_2 + E_3) + E_3 + r \cdot E_3] \) となる。これに対してリサイクルがない場合のL-メドは、

\[
Q_B \cdot (E_1 + E_2 + E_4 + E_4)
\]

である。その差 \(r \cdot Q_B \cdot [E_3 - (E_1 + E_3 + E_4)] \) 負の値、すなわちリサイクルに要するE-メドE_3が採掘、精錬、生産、加工などに廃棄に要する合計のE-メドE_1 + E_2 + E_3よりも小さい場合に廃棄される物質・エネルギー量の削減が起こり、リサイクルに意味があると判定できる。

Fig. 3 Lifecycle of a product without recycle process (a) and with horizontal recycle process (b)
Horizontal arrows (both inflows and outflows) relate E-meds. E represents E-meds and T signifies T-meds. The letter r stands for recycle rate (0 ≤ r ≤ 1) and Q_B for the quantity of the benefit. The word and the formula in []“s indicate the associated nature and the quantity of the benefit flow. Note that no procedural loss in the recycle process is assumed and that the every bit of the inflow of unneeded matter to recycling process is returned to the transport-sell-use-etc. stocks. Also note that n(1-r) is the number of recycles and that 1/(1-r) is the number of times by which the service time of material is prolonged.
さらに、今求めたL-メドからライフサイクルに互った環境効率を考えることが出来る。すなわち、L-メドは環境効率の分母である環境負荷に相当するため、発生するペネフィットがQ₈であるFig.3の場合、その環境効率は、リサイクルがない（a）では1/[(E₁ + E₂ + E₃ + E₄) / (1 - r)]、（b）では1/[(1 - r) · (E₁ + E₂ + E₄)] となる。

ここで明らかように、ライフサイクルに互った環境効率では、特定のスロックスにおける改良が、そのまま線型で全体に結びつかない。

従来、資源生産性や環境効率の向上をファクターで表すことが広く行われている（Schmidt-Bleek, 1994, Von Weizsäcker et al., 1995）。そのような表現が適切であるためには、ライフサイクル全体で資源生産性や環境効率を捉えるのではなく、改善が直接影響を及ぼす範囲に限った方がよいことを、この結果は示していると考えられよう。また逆に、範囲の区切り方すなわちパワーサイクルの設定の如何がファクターの数字を変えることから、その設定を明確にすることが重要性も示されている。

次に、リサイクル経路が存在することによって地球システムに戻される物質に貼り付くメドがどう変わるかを見てみよう。これには、リサイクルが存在するときのL-メドを粉末物のペネフィット量(1 - r) · Q₈で割れば良い。この値は、E₁ + E₂ + E₃ + E₄/(1 - r) + r · E₃/(1 - r) とす。これを変形すると、E₁ + E₂ + E₃ + E₄ + r · E₃/(1 - r) とする。これは、単位ペネフィット当たりで、リサイクルがない場合のL-メドをE₁ + E₂ + E₃ + E₄と1回のリサイクルで生産されるメドE₃ + E₄にリサイクル回数であるr/(1 - r)を掛けたメドとの和となっている。このことから、リサイクルがおこなわれることにより、リサイクルの回数に比例したメドが追加的に発生していることが解る。

4. 非水平リサイクルにおけるメド

使用済みのものがこれまでとは異なるペネフィットの提供により生がリサイクル、すなわちカスケードリサイクル（質の低下をともなう場合）あるいはエスカレードリサイクル（質の向上をともなう場合）のケースを考えよう。今、簡単のために、Fig.4に示したライフサイクルを考える。すなわち、あるペネフィットB₁がQ₁という量だけ提供される流れと、別のペネフィットB₂がQ₂だけ提供され

![Fig. 4 Lifecycle of a product with a non-horizontal recycle process](image)

Left half of the figure shows the lifecycle of benefit B₁, and the right half the lifecycle of benefit B₂. Horizontal arrows (both inflows and outflows) relate E-meds. E represents E-meds and T signifies T-meds. The quantity of the benefit provided by the stocks is Q₁ for B₁ and Q₂ for B₂. The overall quantity of flows that yield these benefits is supposed to remain the same before entering into and after passing through every stocks. After the end of its use, a portion of Q₁, i.e., R₁, is processed and the benefit B₁ of E₈ quantity is added to the flow of B₂.

Eco-Engineering (7) 157
る流れとことがある。その時，使用済みのペネフィット B₁の一部 R₃がリサイクルの工程を経て R₃量のペネフィット B₂となり B₄の加工工程に入る。そこで各スロックスが単位量のペネフィットを生じるために必要な Eメドが図に示されたところである。し、リサイクルの有無ならびに Q₁，Q₂，R₁，R₂の大きさに依らず E-Medは変わらないとする。この時，E-Medが Ex（xは添字数を示す）であるスロックスから生じるペネフィットのT-MedをTxとすれば次の式が成り立つ。

T₁₁ = Q₁ * E₁₁ ..(6)
T₁₂ = T₁₁ + Q₁ * E₁₂ (7)
T₁₃ = T₁₂ + Q₁ * E₁₃ (8)
T₁₄ = T₁₃ + Q₁ * E₁₄ (9)
T₁₅ = (Q₁ - R₃) * (T₁₄ / Q₁ + E₁₅) (10)
T₁₆ = R₃ * (T₁₄ / Q₁ + E₁₆) (11)
T₂₁ = (Q₂ - R₂) * E₂₁ (12)
T₂₂ = T₂₁ + (Q₂ - R₂) * E₂₂ (13)
T₂₃ = T₂₂ + Q₂ * E₂₃ (14)
T₃₄ = T₃₂ + Q₂ * E₃₄ (15)
T₅₂ = T₅₄ + Q₂ * E₅₂ (16)

これらの式からペネフィット B₁の廃棄物のT-Medである T₁₅は（Q₁ - R₃）*（E₁₁ + E₁₂ + E₁₃ + E₄₁ + E₁₅）、ペネフィット B₂の廃棄物のT-Medである T₂₅は（Q₂ - R₂）*（E₂₁ + E₂₂ + E₄₂ + E₅₁ + E₂₅）である。これらは再び生成するペネフィット B₄の L-Medである Q₁*（E₁₁ + E₁₂ + E₁₃ + E₄₁ + E₁₅）、ペネフィット B₂の L-Medである Q₂*（E₂₁ + E₂₂ + E₂₃ + E₅₁ + E₂₅）である。

したがって、リサイクルの有無における差は R₃*E₁₆ - (R₁*E₁₅ + R₂*E₁₃ + R₃*E₁₂ + R₄*E₁₀) となる。これは、ペネフィット B₁を R₁量リサイクル工程に図としてペネフィット B₂を R₂量生じるのに要するメドが、ペネフィット B₃を R₃量廃棄し、ペネフィット B₄を R₄量採縮し、精製するのに要するメドの総和を下図れば、L-Medの差が著しい値となって、熱物をもたらすことになる。すなわち、ペネフィット B₁と B₂の相対的な大きさがリサイクルの効果に重要な意味を持っている。R₂と R₃との比が大きければ大きいほどリサイクルが有効となるからである。この R₃より小さいカスケードリサイクルと R₂が R₃より大きいエスカレードリサイクルの明確な違いは、次の場合と同じに同じ結果である（Mizutani, 2003b）。

Fig. 4で示した非水平リサイクルが水平リサイクルと異なるのは、リサイクル回数に関する事項である。すなわち、B₁と B₂が異なる場合には、一意的なリサイクル回数が定義できない。これは、Fig. 4が物理的に一方通行の構造を持っているからである。このための問題を少しでも克服し、資源生産性・環境効率を高めるには、カスケードあるいはエスカレードの意味で多段構造を持ったライフサイクルの設計が必要であろう。

リサイクルと L-Medとの関係についても述べると、Fig. 4で、B₁を提供してそのまま廃棄される部分である Q₁ - R₁にはリサイクルの影響がないことから、その L-Medはリサイクルがない場合における B₁の L-Medに等しい。一方、B₂の単位ペネフィット量当たりの L-Medは [R₁*(E₁₁ + E₁₂ + E₁₃ + E₁₄ + E₁₅) + (Q₂ - R₂)*(E₁₁ + E₁₃ + E₂₅)] / Q₂ + E₂₃ + E₂₄ + E₂₅ となる。すなわち、一回 B₁というペネフィットを提供した後に B₂を提供する部分があるため、その分だけ B₂の L-Medが大きくなっている。

5. まとめ
本論文では、製品やサービスを生じるために地球システムに廃棄する物質やエネルギーの负荷を定量的に表現することによって製品・サービスの比較を可能にする考えである数理的・エネルギー・ディスパーザル（メド）を定義した。メドの基礎になるデータは LCA インベントリーであり、メドの直接的応用分野の例としては資源生産性・環境効率・環境ラベルなどが挙げられる。以下に、今回得られた知見をまとめ、メドの今後の展望を述べる。

(a) リサイクルの意義判定
リサイクル経路には一般的に水平リサイクル、カスケードリサイクル、エスカレードリサイクルの3種がある。これらについて、メドから見た意義を判定する方法を提示した。その結果、リサイクルの意義に関する一般的通念である「リサイクルに要する物質とエネルギーの消費がリサイクルによって低減されるスロックスでの消費を下回っていれば良い」という考えを確認し、更にそれを定量的に判断する明確な基準を制定した。また、カスケードとエスカレードという異なる非水平リサイクルの違いが、メドによって定義されたと共に、今後、ヒューマン・ニーズの序列に基づいてペネフィットを相互に比較する必要性が示された。

(b) メドから見たリサイクル型の特徴
地球システムに戻される廃棄物が負荷しているメドに関する考察では、リサイクルの形態の違いが現れた。すなわち
ち、水平リサイクルではリサイクル数に応じてリサイクルに要するメガが廃棄物に付加していたが、非水平リサイクルの場合には、そもそもリサイクル数が定義されず、リサイクルによって負荷されるメガも一定であった。これにより、非水平リサイクルを多段化しない限り、それらの災害的リサイクル言い難いということである。

(c) 再生と同化の可能性の選択
一般に人間による物質・エネルギーの利用に関しては、環境との関連に関して、資源に関してその再生可能性、廃棄物についてはその同化可能性が問われることが多い（Mizutani, 1999）。しかしながら、再生も同化も相対的なものであり絶対的な区別があるものではない。また例えば、仮に再生可能な資源であっても、それを利用する際に、現代科学技術経済の相互連関に破られ再生の可能性が利用することになるのが常である。ハウス栽培や地球裏側の農産物の航空機輸送などは、その一例である。メドでは、ペネフィットの中で全体として捉え、その総和として物質とエネルギーの廃棄を計量することにより、同化可能か不可能かといった2者択一の問題から抜け出し、利用システムとして何がより良いのかの選択を可能にする。

(d) リサイクルと長寿命化の選択
あるペネフィットの環境負荷を低減しようとする時、リサイクルと長寿命化のどちらを選択するかという判断を迫られることがある。リサイクルなしで再利用にはリサイクル工程のEメドが加わる。使用段階のメドとリサイクル工程でのメドを精査比較することにより、どちらを選択するかの判断が明確なものとある。

(e) 一部のフローに限った環境影響評価
一般に、現在の環境問題では、重金属や有機塩素化合物、あるいは二酸化炭素や放射性物質など特定の廃棄物に関心が集中しており、それらに関するデータが近年に限って重点的に集められているだけという場合が多い。メドは、物質循環についての数理的なモデル（Mizutani, 2002a）に基づいており、限られた項目についてだけデータが入手可能な場合、何が欠けているかを明示できる。そのため、部分的評価のいずれを見積もることが可能になっている。それを利用して変化するために、限られたデータでどの位全体を代替しうるのかを正しく見積もる方法論の展開が望まれる。

(f) 廃棄しても差し支えないことの判定
残された大きな課題に、「地球システムに捨てるも差し支えない」とは何かというものがある。最近、LCAの環境影響評価において、地球システムへの廃棄は無害化が前提であるとした議論がおこなわれている（Halada, 2002）。廃棄されるものは何らかの濃集物であり、その一方で資源として採取されるものも同様に濃集物である（Mizutani, 2002b）。そうである限り、廃棄は採取した地球システムを全く破乱しないとは言えないであろう。「無害」の定義、「差し支えない」ということの判断基準が、早急に求められる。

6. マーとメドの今後の課題
資源の採取と不要物の廃棄とは人間活動という一つの事象の表裏であり、同時に進行する一体のものである。本論文は廃棄をあつかうメドに関するものであるが、これに対するマーの面は既に報告した（Mizutani, 2003a, Mizutani, 2003b）。今後、具体的な例を多数取り上げることにより、このような環境負荷の一つ一つの判断を示し、以下に早急に取り組まれるべきマーとメドに関する共通の課題を示す。

(a) 地球環境と環境負荷の決定
地球生命維持システムへの環境負荷の大きさは、本来、地球環境が時間と空間の両方で具体的に明確になった上で、それとの相対的な関係で求められるものであろう。しかし、そのような地球環境が一朝一夕に明示されるとも思われない。また、何を環境負荷問題として数え上げるのかということも未確定である。

(b) データの正確さと収集範囲
マーとメドは、個々のスイッチにおける物質・エネルギー収支を人類圏と地球システムとの収支にまで還元。これには、LCAのバウンダリインベントリーの概念を拡張するものと言える。したがってメドでは、時間的空間的にも広範にデータを収集することが必要となる。その実務上の困難は大きい。正確さを損なわずに簡易化された拡張LCAを工夫するなど、この困難をどう克服するかも今後の課題となろう。

(c) アロケーション
今回、マーとメド算出の方法論をあつかう中で、アロケーションは所与とした。大枠を設定するレベルではアロケーションに依らずに記述が出来かも知れない。しかしマーとメドは、これまでのLCAの範囲を超えてデータの収集を求
るるものであることからも、実践上ではアプロセーションに関する課題は大きい。

(d)「採掘と廃棄」、「人為と自然」の区別

人間活動を詳細に見ると、何を採取し何を廃棄しているのかの区別が困難であることに気づく。特に間接的に影響を受ける場合の大気、水、土などについてはそれが顕著である。いずれ、地球環境の解明が進み、マーケットを模倣せずマーケットとして扱う環境負荷の表現があることはだろう。同様に人為と自然の区別も容易ではない。ストック性の人為起源物が、その存在によって物質の移動をもたらしている場合などはその例である。

(e)異なるニーズ、ベネフィットの比較

5節「まとめ」での（a）でも述べたが、地球環境の下での人間活動を考えると、何らかの方法で異なるニーズやベネフィットを序列付けすることも必要となる。資源と環境の適正な分配が課題となれば、各ニーズの必要性をはかることが必要となる。今回の一連の報告では、ベネフィットとその根拠にあるニーズそのものは中味を問われていない。しかし、それらを比較する方法論は強く求められている（Mizutani, 2003c）。本論文中でも、非平水サイクルで2種のベネフィット（B1とB2）の量の大小を比較していながら、それを可能とする方法論は示していない。例えば、環境の価値を評価する考え方の一つである顯示選好法は実際に人々が支払った金額で価値の大小をとらえるというものであるが、これに基づいてマーケットの大小がベネフィットの効能を反映していると見ることはできないだろうか。ヒューマン・ニーズの序列付けについても同様な見方で取り組むことが可能ではないだろうか。

(f)時間変化とエネルギーの扱い

マーケットに関する今回の一連の論文（Mizutani, 2003a,Mizutani, 2003bと本文論文）は、地球システムと人類間との間での物質・エネルギー収支を知るための大枠を定めることと目的があり、時間ならびに物質とエネルギーの扱いについて具体的には論じていない。しかし良く知られているように、LCAなどの既存の環境影響評価手法では、これら点に関する考察が欠けており、ライフサイクルが固定的であり時間的変化がない点が一大欠陥となっている（Mizutani, 2003d）。今後、これらに関する考察を進める必要がある。

(g)現実に沿った定式化

今回、人類間と他間との境界をバウンダリとして物質・エネルギーの収支を求める方法論であるマーケットを提案する中で、多くの仮定をおこなった。その中には、最初の提案として簡単化のために数えて現実からは多少異なったものがある。例えば、①ベネフィット量が全ライフサイクルを通じて変わらず、時間への依存性もない、②水平リサイクル工程の歩留まりが1である、③単位ベネフィット量当たりのマーケットは一定であり、ベネフィット量や時間（履歴）などへの依存性がない、④絶対の物質・エネルギーが計数可能であり失われることがない、などである。これらについては、それぞれに応じた現実的式をたてることにより、複雑化と引き換えがあるが、取り込むことができるであろう。

謝辞

本論文は匿名査読者からの有益なコメントによって改善されました。ここに記して感謝いたします。

引用文献

Halada, K., 2002: Activity Results of Inventory Study Committee WG2, LCA Project Report 2002, Japan LCA Forum and Japan Environmental Management Association of Industries, Tokyo, 10-15.（原田幸明（2002）：イベントリ研究会WG2活動結果、平成13年度LCAプロジェクト報告会、LCA日本フォーラム、産業環境管理協会、10-15。）

