1. 緒言

次世代石油代替エネルギーおよび資源として注目される天然ガスの有効利用手段として、Gas To Liquid (GTL) 技術に注目を集めている。この GTL プロセスにおける新規合成ガス製造プロセスとして、平衡制御がなく、高 GHSV 能力を有する直接部分酸化反応（反応式 1）を検討した[1]。

\[\text{CH}_4 + 1.2 \text{O}_2 \rightarrow 2 \text{H}_2 + \text{CO} \quad \Delta H = -36 \text{kJ/mol} \]

反応の中および多孔質アルミナフォーム上に Rh を担持した触媒が高活性を示すことが知られているが[2]、ホットスポットの形成[3]や反応の選択性に対する問題がある。これまでに本研究ではこれらの問題を改善すべく、さまざまな第二金属の添加効果を検討した結果、Rh と等モル量の Co を添加した際に部分酸化活性が向上することを見出した。本研究では CH₄-D₂ 交換反応、EXAFS 測定を行いその活性向上メカニズムについての考察を行った。

2. 実験

触媒は 0.3 wt% Rh/MgO をベースに、Rh と等モル量の第二金属を共合浸漬法により担持し調製した。担体は Wako 製 MgO を空気中 1123 K で 3 時間焼成した MgO (6.5 m²/g) を用いた。反応は全て固定床流通式反応器にて行い、添加第二金属種をスクリーニングする際には、発熱反応による触媒層での温度上昇を無視できるように、CH₄/O₂/N₂ = 4/294 の窒素過剰空気下にて希釈した条件で反応を行った。触媒充填量 10 mg、供給ガス全流量 1500 cm³/min、接触時間 0.4 ms、反応温度 973 K を標準条件として評価した。

Rh/MgO 及び Rh+Co/MgO 触媒については、窒素による希釈なしの CH₄/O₂ = 2/1、供給ガス全流量 300 cm³/min の混合ガスを用い、外熱供給のない自己発熱条件下で実験を行い、この際の触媒層温度分布を IR サーモグラフィーにより測定した。

CH₄-D₂ 交換反応は前処理として 1123 K、30 分間で水素還元処理を行った。反応温度は 473 ~ 573 K、N₂ をキャリアガスとし、CH₄/D₂ = 3.05/0.05 μmol のバ尔斯ガスを供給した。反応後のガスの一部を四重極質量分析計により測定し CH₄-D₂ 交換活性を評価した。

また、調製した触媒の構造解析として Rh K-edge (Spring-8, 2006A1058) および Co K-edge (KEK-PF, 2006G095) EXAFS を行った。

3. 結果と考察

3.1. 部分酸化活性と触媒層温度分布

Fig. 1 に窒素希釈条件での部分酸化反応に対する 0.3 wt% Rh/MgO への第二金属添加効果を示す。また、参照として 1.0 wt% Rh/MgO の結果も示す。Rh/MgO の Rh 担持量依存の結果から、転化率および選択率とも 1.0 wt%で頭打ちとなっていた。スクリーニングの結果、Co、Ni、Mn、Mo が促進効果を示し、特に Rh+Co/MgO は 1.0 wt% Rh/MgO よりも高い性能を示した。

Fig. 2 に示すように、Rh+Co/MgO は CH₄/O₂ = 2/1 の条件で CH₄/O₂/N₂ = 4/294 の窒素過剰空気下で希釈した条件下で反応を行った。触媒充填量 10 mg、供給ガス全流量 1500 cm³/min、接触時間 0.4 ms、反応温度 973 K を標準条件として評価した。

Fig. 1. メタン部分酸化反応に対する 0.3 wt% Rh/MgO
への第二金属添加効果。

(a) 0.3 wt% Rh/MgO, (b) 1.0 wt% Rh/MgO,
CH₄/O₂/N₂ = 60/30/1410 cm³/min, W/F = 0.0027 g/hmol⁻¹, 973 K, 0.1 MPa。

Fig. 2. メタン部分酸化反応中の触媒層最高温度。
CH₄/O₂ = 180/90 cm³/min, W/F = 0.015 g/hmol⁻¹, 0.1 MPa。
3.2. Rh-Co パイメタル微粒子の構造解析

Rh/MgO 及び Rh+Co/MgO 触媒の微粒子構造解析として EXAFS 測定を行った。Table 1、2 に 1123 K、30 分間で水素還元処理後の Rh K-edge 及び Co K-edge EXAFS のアプローチフィッティングの結果を示す。Rh K-edge EXAFS の結果、Rh+Co/MgO 触媒には Rh-Rh 結合の他に Rh-Co 結合の寄与がみられた。また、Co K-edge EXAFS からも Co の添加量と相関した Co-Rh 結合の寄与がみられ Rh-Co 合金が確認された。

Table 1. Curve fitting results of Rh K-edge EXAFS.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Shells</th>
<th>CN</th>
<th>R / 10^3 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 wt% Rh/MgO</td>
<td>Rh-Rh</td>
<td>10.6</td>
<td>2.68</td>
</tr>
<tr>
<td>Co-Rh/MgO</td>
<td>Rh-Rh</td>
<td>7.4</td>
<td>2.64</td>
</tr>
<tr>
<td>(Co/Rh = 1.0)</td>
<td>Rh-Co</td>
<td>3.2</td>
<td>2.63</td>
</tr>
<tr>
<td>Co+Rh/MgO</td>
<td>Rh-Rh</td>
<td>5.5</td>
<td>2.63</td>
</tr>
<tr>
<td>(Co/Rh = 2.0)</td>
<td>Rh-Co</td>
<td>5.0</td>
<td>2.59</td>
</tr>
<tr>
<td>Rh foil</td>
<td>Rh-Rh</td>
<td>12.0</td>
<td>2.68</td>
</tr>
</tbody>
</table>

Table 2. Curve fitting results of Co K-edge EXAFS.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Shells</th>
<th>CN</th>
<th>R / 10^3 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 wt% Co/MgO</td>
<td>Co-Co</td>
<td>3.8</td>
<td>2.50</td>
</tr>
<tr>
<td>Co-O</td>
<td>2.9</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Co+Rh/MgO</td>
<td>Co-Co</td>
<td>3.7</td>
<td>2.56</td>
</tr>
<tr>
<td>(Co/Rh = 1.0)</td>
<td>Co-Rh</td>
<td>3.3</td>
<td>2.62</td>
</tr>
<tr>
<td>Co-Rh</td>
<td>Co-O</td>
<td>2.6</td>
<td>2.09</td>
</tr>
<tr>
<td>(Co/Rh = 2.0)</td>
<td>Co-Rh</td>
<td>2.5</td>
<td>2.59</td>
</tr>
<tr>
<td>Co-Rh</td>
<td>Co-O</td>
<td>2.6</td>
<td>2.13</td>
</tr>
<tr>
<td>Co foil</td>
<td>Co-Co</td>
<td>12.0</td>
<td>2.51</td>
</tr>
<tr>
<td>Co-O</td>
<td>6.0</td>
<td>2.13</td>
<td></td>
</tr>
</tbody>
</table>

3.3. 部分酸化活性向上メカニズム

定常反応中の触媒上における酸素吸着量を検討するためにパルス法を用いての評価を行った。300 cm³/minの He をキャリアガスとし、CH₄/O₂ = 2/1 のパルスガスを 10 パルス供給した。反応後に H₂パルスを供給し、触媒上の吸着酸素によって消費される水素量から酸素吸着量を測定した。その結果を Fig.3 に示す。

O₂ purge によって触媒中の金属量に相当する水素消費がみられ、パルス酸化まで進行していると考えられる。Co は Rh に比べて酸素親和性が低いのにもかかわらず、高温側では酸化されにくく分離中も金属状態を維持し、それらが高活性につながっているものと考えられる。

また、メタンの解離活性能を評価するために CH₄-D₂ 交換反応を行った。その結果を Fig.4 に示す。

Fig. 4. CH₄-D₂ 交換反応。
Pulse gas: CH₄/D₂ = 3.05:3.05 μmol (N₂, 30 cm³ min⁻¹), 0.1 MPa.

CH₄-D₂ 解離活性化能は Co/Rh = 1.0 のときに最も高く、Rh/MgO に対する顕著な Co の添加効果がみられた。Rh/MgO および Rh+Co/MgO (Co/Rh = 1.0, 2.0) 上の CO 吸着量はそれぞれ 1.2, 2.5, 1.9 μmol/g-cat であった。Co/Rh = 1.0 における高活性の理由は表面原子数の増加から説明できる。交換活性の向上が表面原子数の増加ほどではないのは、表面に露出した Co の活性が低いことに由来している。一方 Co/Rh = 2.0 の場合、表面に露出した Co が活性の低下につながると解釈できる。特徴的なことは表面に露出した Co は Co/Rh = 1.0 までは定常反応中において還元状態を維持していることである。

謝辞：本研究は石油天然ガス・金属鉱物資源機構（JOGMEC）および千代田工業建設（株）の支援によるとものであり、ここに記して謝意を表する。