1. 緒言
当研究室では、これまで担体の表面積を大きく向上させることができるソル・ゲル法に着目し、チタニア担体調製時にモリブデンをドープすることで、通常の還元法による触媒より高表面積で高活性を有する触媒が得られることが報告されてきた。本研究では、ソル・ゲル法による Mo/TiO₂ 触媒調製時に、カーボンテンプレートとして石触媒を用いて得られた触媒の物性と水素化脱硫性能を評価した。

2. 実験
触媒は、原料としてチタンイオンプロピオン酸トリメチル(ti(OCH₃)₃)、イオン交換水、2プロパノール、硝酸アンモニア水(NH₃aq)、モリブデン酸アンモニウム(NH₄MoO₄·4H₂O)、硫酸(1.0·(HCOOH))₂)を用いて調製した。調製したゲルを室温で12時間、90℃で6時間乾燥し、その後、500℃で3時間焼成した。調製した触媒のXRD測定、IR測定、N₂吸着測定を行った。MoO₄の担持量は10wt%とし、チタニア担体調製時にMoを加えた触媒をM/Tと、TiO₂を調製後Moを含浸担持した触媒をM-Tと表記した。また、TiO₂は石触媒を加えた触媒、Nは石触媒をNH₃で中和した触媒をそれぞれ示す。

水素化脱硫反応は、固定床流通式反応装置を用いて、ジェンポチオフェン(DBT)のデカン溶液(1wt%)、WHSV 80h⁻¹、H₂ 5MPa、水素圧力 180Pa、反応温度 260-360℃の条件で行った。

3. 結果と考察
N₂吸着測定から、sol-gel TiO₂に比べてM/T、N-M/T、N-TM/Tは約10倍近い表面積(77-105 m²/g)を示し、細孔容積(いずれも約0.2cm³/g)が高い値を示した。この方法では、石触媒を加えることによる表面積、細孔容積に与える影響は小さかった。一方、TiO₂をあらかじめ調製した触媒では石触媒を用いることでTiO₂を高表面積化でき、細孔容積も増加した。N-M/TおよびN-TM/Tでは表面積が約55m²/g、細孔容積が約0.4cm³/gであり、担体調製時にMoを加える触媒と比べて、表面積は減少したが細孔容積は増加した。また、

3. 結果と考察
N₂吸着測定から、sol-gel TiO₂に比べてM/T、N-M/T、N-TM/Tは約10倍近い表面積(77-105 m²/g)を示し、細孔容積(いずれも約0.2cm³/g)が高い値を示した。この方法では、石触媒を加えることによる表面積、細孔容積に与える影響は小さかった。一方、TiO₂をあらかじめ調製した触媒では石触媒を用いることでTiO₂を高表面積化でき、細孔容積も増加した。N-M/TおよびN-TM/Tでは表面積が約55m²/g、細孔容積が約0.4cm³/gであり、担体調製時にMoを加える触媒と比べて、表面積は減少したが細孔容積は増加した。また、

3. 結果と考察
N₂吸着測定から、sol-gel TiO₂に比べてM/T、N-M/T、N-TM/Tは約10倍近い表面積(77-105 m²/g)を示し、細孔容積(いずれも約0.2cm³/g)が高い値を示した。この方法では、石触媒を加えることによる表面積、細孔容積に与える影響は小さかった。一方、TiO₂をあらかじめ調製した触媒では石触媒を用いることでTiO₂を高表面積化でき、細孔容積も増加した。N-M/TおよびN-TM/Tでは表面積が約55m²/g、細孔容積が約0.4cm³/gであり、担体調製時にMoを加える触媒と比べて、表面積は減少したが細孔容積は増加した。また、

4. まとめ
TiO₂調製時にMoを加える触媒では、石触媒をカーボンテンプレートとして加え、中和して用いることにより、高活性な触媒が得られた。TiO₂をあらかじめ調製してMoを含浸担持する触媒でも、石触媒を用いることにより、細孔を形成させ、高表面積化することができ、結果として触媒の高活性化が可能になった。