Pt/ZnO 系触媒上でのプロパンの脱水素

1. 緒言
近年、プロピレン誘導体の需要の増加により原料であることの需要が増加している。プロピレンの製造法としてプロパンの脱水素があるが、脱水素反応温度は600℃程度の高温が必要であり、熱反応の生成熱が問題である。当研究では、イソプロンとプロパンの脱水素を比較し、プロパンの脱水素におけるPt/ZnO系触媒の性能の問題点について検討を加えた後に、プロパンの脱水素のためのPt/ZnO系触媒の改良を目的とした。

2. 実験
ZnO担体は、Na₂CO₃を溶液として洗浄させ、得られた洗浄液を複数回、乾燥後、500℃、1hの脱水素処理を施した。ZnO-Cr₂O₃（ZnO/Cr₂O₃=8.2（mol%）担体）（NH₄）₂CO₃

Table 1 プロパンの脱水素におけるPt/ZnO系触媒の性能

<table>
<thead>
<tr>
<th>試料</th>
<th>プロパン</th>
<th>プロピレン</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/ZnO</td>
<td>Na₂CO₃</td>
<td>9.1</td>
</tr>
<tr>
<td>Pt-Sn/ZnO-Cr₂O₃</td>
<td>(NH₄)₂CO₃</td>
<td>20.7</td>
</tr>
<tr>
<td>Pt-Sn/ZnO-Al₂O₃</td>
<td>Na₂CO₃</td>
<td>20.8</td>
</tr>
</tbody>
</table>

Fig. 1 (a)イソプロン、(b)プロパンの離脱率
▲: Pt-Sn/ZnO-Cr₂O₃ ◆: Pt/Sn/ZnO-Al₂O₃ ■: Pt/ZnO

かつ、バイメタリック効果により異常化を抑制する効果があることが示されていることから、イソプロンの脱水素と異なり、プロパンのそれでは異常化が生じないことが示唆されていると考えられる。

さらに、種々のPt/ZnO系触媒のスチーム効果の影響を調べるために、プロパンの脱水素中にスチームのオンオフを実施した。その結果、スチームを導入した際にはPt/ZnO系触媒では活性が選択性が低下した。その他の触媒では活性が増し、Pt-Sn/ZnO-Cr₂O₃系触媒は活性が増し、したがって、イソプロンの脱水素においてPt/ZnO系触媒では、ZnO担体由来の自由電子によって高い活性を示すが、スチームを導入するとスチームに自由電子が難迫され、活性が低下することを明らかにしている。また、三価の金属を担体に加えると、BET表面積とPt分散度が向上すること、および過剰な自由電子の発生によりスチームを導入しても活性が低下しないことを明らかにしている。このことから、プロパンの脱水素においてPt/ZnO系触媒ではスチームを導入すると活性が低下し、その他の触媒で活性が向上した場合には、促進剤の影響と同様の理由と考えられる。

つまり、イソプロンの脱水素においてCrよりも高選択性を示したAlを用いたZnO-Al₂O₃担体を調製した。Table 1 より、ZnO-Al₂O₃担体は、ZnO-Cr₂O₃担体とは異様な活性を示し、ZnO-Cr₂O₃担体よりも高い選択性を示した。