修飾ゼオライトによるヘキサンの接触分解

(東工大) ○望月 大司・今井 裕之・横井 嘉之・雑波 征太郎・野村 淑子・辰巳 敏

1. 緒言
ゼオライトを触媒として用いたナフサの接触分解反応は、現行の熱分解よりも２地点の低温で反応が進行し、プロピレン（エチレン）を高できるから新たな低級オレフィン製造法として注目されている 1)。しかし、接触分解により生成したプロピレンやブタンは逐次的に反応し、芳香族炭化水素など酸化を生成してしまうため、高い低級オレフィン収率を得るためには逐次反応を抑制することが重要となる。一般に酸性度を弱くするとこの逐次反応が抑制されることが知られている 2)、そこで本研究では、アルカリ土類金属で修飾したZSM-5を用いてヘキサン接触分解反応を行ない、触媒の評価を行なった。

2. 実験
アルカリ土類化合物には既報 3)に従い調製した結晶サイズ1μmのZSM-5（Si/Al=50）を用いた。1gのNH₄⁺-ZSM-5を0.1M硝酸マグネシウム溶液またはカルシウム水溶液100mlに加えて80℃でイオン交換を行なった。なお、Mg²⁺とCa²⁺の導入量を同程度にするため、イオン交換の回数を調節した。イオン交換後純水で洗浄、乾燥し、550℃で焼成することでアルカリ土類金属修飾ZSM-5を得た。

ヘキサンの接触分解は常圧固定床連続反応装置を用いて行った。Heをキャリアガスとして用いGC(FID)により生成物の分析を行なった。

3. 結果と考察
ICP測定から算出したMg/Al, Ca/Alはそれぞれ0.39, 0.33であった。窒素吸着量測定の結果BET比表面积、ミクロ孔容積の大きな変化は見られなかった（それぞれ380m²/g, 0.18m³/g）。
アンモニアTPDの結果をFig.1に示す。アルカリ土類金属でイオン交換することによってプロトン由来の高温度のピーク面積は減少し、低温側に一部のピークが現れた。これにより、アルカリ土類金属がイオン交換したことにより強い酸点が形成されたためである。

ヘキサン接触分解を行ったところアルカリ土類金属修飾により活性が低下した。これは、イオン交換により、強い酸点が減ったためである。Fig.2にH-ZSM-5およびアルカリ土類金属修飾ZSM-5触媒を用いたときの選択性の変化率依存性を示す。この条件下では約3%のヘキサンが熱分解により転化する。熱分解率は流量に依存する反応なので、これを一定にするため触媒量を変えることでW/Fを調節した。転化率40%程度の時はいずれの触媒も40%以上からなるプロピレン選択性を示したが、H-ZSM-5では転化率40%を越えることがプロピレン、ブタンの選択性が低下し、エチレン、BTX（ベンゼン、トルエン、キシレン）の選択性が増加した。これらプロピレン、ブタンが逐次的に反応したためである。一方、アルカリ土類金属修飾ZSM-5では80%程度の転化率においても40%近くプロピレン選択性を示した。また、転化率が低いときにもH-ZSM-5よりも高いブタン選択性を示し、BTXの選択性が著しく低下していることから、逐次反応が抑制されたことにより高いプロピレンとブタンの選択性が維持できると考えられる。選択性に関してMg²⁺とCa²⁺で相対的に差は見られなかった。以上の結果からアルカリ土類金属で修飾することにより逐次反応を抑制し、高いプロピレン収率が得られることがわかった。

Fig.1 NH₃-TPD profiles

Fig.2 Relationship between Conversion and Selectivity in Catalytic cracking of n-hexane over ZSM-5 catalysts.
W/F: 2.5-144 g-cat h/(mol-n-Hexane); P₀ atm=6.0 kPa;
Reaction temp. 600℃.

3) 望月ら、第25回ゼオライト研究発表会、A27 (2009)