リチウムイオン電池と高分子材料

1. 緒言
リチウムイオン電池は“カーボン材料を負極活物質にし、リチウムイオン含有移動金属酸化物（LiCoO₂）を正極とする非水系二次電池”である。その作動原理は図1に示すように充電で正極材料 LiCoO₂から Liイオンが脱離し、負極材料カーボン（C）に Liイオンが吸着され、この電気化学的反応で電子が正極から負極に流れ込む。

図1 Electrochemical system of LIB

放電はこの逆反応となる。従来の二次電池とは基本的に異なる化学反応は、イオンと電子のみが関与する新しい概念の二次電池である。このリチウムイオン電池は、携帯電話、ノートPCなどのIT機器の電源として用いられ約1兆円の市場規模となっている。さらに、これから電気自動車（Electric Vehicle）や電力貯蔵（Energy Storage System）などへの用途展開が進むつつある。

このリチウムイオン電池には種々の高分子材料が重要な役割を果たしており、その開発の現状、今後の展開の可能性について述べる。

2. リチウムイオン電池の構成材料の概要
リチウムイオン電池の主な構成材料を表1に示す通りである。これまで主として LiCoO₂や LiMn₂O₄など Co系、Mn系の正極材料が用いられていた。最近では LiNiₓMn₁₋ₓO₂ (0 < x < 1) などの三元系新規正極材料も用いられるようになってきている。リチウムイオン含有移動金属酸化物である負極材料は合成が黒鉛材料（グラファイト）であるが一部では低結晶性のハードカーボンも用いられている。

表1 Main materials used in LIB

<table>
<thead>
<tr>
<th>Components</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive materials</td>
<td>LiCoO₂, LiMn₂O₄</td>
</tr>
<tr>
<td>Negative materials</td>
<td>Graphite, hard carbon</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>Ethylene carbonate</td>
</tr>
<tr>
<td>solvents</td>
<td>Ethyl methyl carbonate</td>
</tr>
<tr>
<td>Electrolyte salts</td>
<td>LiPF₆, LiBF₄</td>
</tr>
<tr>
<td>Separators</td>
<td>Microporous membrane</td>
</tr>
<tr>
<td>Binder resins</td>
<td>Polyvinylidene fluoride,</td>
</tr>
<tr>
<td></td>
<td>SB latex</td>
</tr>
</tbody>
</table>

電解液は環状炭酸エステルと酸状炭酸エステルの混合溶媒に LiPF₆や LiBF₄などの電解質塩を溶解させたものが用いられている。リチウムイオン電池で高分子材料が用いられているのがセラミックとパインダーである。また電解質の一部としても高分子材料が用いられている。

3. リチウムイオン電池の製造工程と高分子材料
リチウムイオン電池の製造工程は電極製造工程と電池組立工程の二つの工程からなる。
3.1 電極製造工程
電極製造工程フローを図2に示す。

図2 リチウムイオン電池の電極製造工程

正極材料、負極材料ともに電密5~20μmの粉体であり、塗電体であるアルミ箔又は鋼箔の両面に塗布
された構造となっている。この粉末粒子同士の結着
と集電体との密着という役割を果たしているのがバ
インダーという高分子材料である。リチウムイオン
電池の商品化当初は正極、負極ともにPolyvinylidene
fluorideが用いられていたが、そ
の後負極バインダーは水系のSBR latexに置き換え
っている。リチウムイオン電池の電極製造過程でバイン
ダーのマイグレーションという非常に厄介な現象を
起こすために、使用可能なバインダーごく限られた
高分子材料に限定される。新規なバインダーとして
アクリル系非水Dispersionなどが提案されている。

3.2 電池組立工程

電池組立工程フローを図3に示す。

図3 リチウムイオン電池の電池組立工程

この工程では、まず正極板と負極板とともに架
を介して捲回される。その後、電池缶への
挿入、電解液の注入、封口という順でベアセル（単
電池）が製造される。

図4 SEM photos of separators

a) One component dry process
b) Two components wet process
c) Three components wet process

ここで用いられるセパレータはポリオレフィン製
の微多孔膜系セパレータが用いられている。微多孔
膜は0.1μ以下の微孔を有する高分子フィルム
(Micro Pore Membrane)のことである。微多孔膜系セ
パレータは図4に示すように、その製法の差異によ
り乾式1成分系、湿式2成分系、湿式3成分系の3
種類に分類される。目的に応じてこの3種類のセパ
レータが使い分けられている。

4. これからのリチウムイオン電池技術と高分子材料

現在のリチウムイオン電池技術においてバインダーレン、セパレータという重要な要素技術に高分子材料
が貢献しており、今後も技術改良が進んでいくもの
と考えられる。

今後、リチウムイオン電池技術で高分子材料に期
待されるのが固体電解質技術である。

最後に固体電解質技術の最近の進展について述べ
る。リチウムイオン電池の液系電解液を固体電解質
に置き換えることができれば大きな技術革新となる。
これまで無機系固体電解質と高分子系固体電解質の
開発が進められてきていたが、無機系固体電解質で
大きな進展があった。無機系固体電解質の種類を表
2に示すが、この中的非晶質硫化物系で100 S cm⁻¹
以上という画期的にイオン伝導度の高いLi₁₀GeP₂S₁₀
という材料が菅野らにより見いただされている。[1]無
機系であるので電極化、電気化学課題が残っており、
高分子固体電解質で同等レベルのイオン伝導度を達
成すると大きな技術革新につながる可能性が大きい。

表2 無機系固体電解質の種類と長所・短所

<table>
<thead>
<tr>
<th>級類</th>
<th>具体例</th>
<th>長所</th>
<th>短所</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸化物系</td>
<td>ポリスチレン系 (Li, La)TiO₃</td>
<td>空気中での安定性</td>
<td>短所</td>
</tr>
<tr>
<td>酸素酸化物系</td>
<td>NASICON系 Li₃Ta₂(PO₄)₃</td>
<td>空気中での安定性</td>
<td>短所</td>
</tr>
<tr>
<td>非晶質硫化物系</td>
<td>非晶質系 Li₈S·P₂S₅</td>
<td>高イオン伝導性</td>
<td>短所</td>
</tr>
<tr>
<td>硫化物系</td>
<td>シリコン系 Li₄GeP₂S₄</td>
<td>高イオン伝導性</td>
<td>短所</td>
</tr>
</tbody>
</table>

参考文献
1) 菅野了次、平山雅章、釜谷則昭、本間健司、山川
裕一郎、米村雅男、神山崇、加藤裕樹、溝井規、川
本浩二、三井昭男
第52回 電池討論会要旨集 4C20, p255 (2011)