持続的炭素循環に向けた「CO₂の電気化学的微生物メタン変換技術」研究

(国際石油開発帝石*東京大学**)
○前田治男**・五十嵐雅之**
小林慎**・福島直哉**・佐藤光三**

1. 緒言
CO₂排出が主要因と考えられる地球温暖化に代表されるグローバルスケールでの環境問題、さらには石炭、石油、天然ガスなどの化石燃料ベースとしたエネルギー資源の枯渇問題は解決すべき喫緊の課題となっている。これらの課題を「炭素循環の不均衡化」と捉えて、その不均衡を解消するためのアプローチとして「持続的炭素循環システム」の技術開発に、国際石油開発帝石（株）と東京大学は学術連携共同研究という形で平成23年度より取り組んでいる。当該研究においては、CO₂地中貯留（CCS）技術と組み合わせることにより、地中隔離されたCO₂を微生物反応によりメタンに変換し、有用資源として利用する技術の構築を目指している。

（図1）当該メタン変換反応には、地下常在の水素資化性メタン生成菌と電子放出細菌が関与していることが、最近の我々の研究により明らかとなっている。本報告では、メタン生成菌に水素を供給する方法として、電気化学的な水素還元元利用の可能性につき、実油田に常在する微生物を利用した実験もとに得られた最新結果につき紹介する。

2. 実験
電気化学的微生物メタン生成の反応プロセスにおいては、地下常在の水素資化性メタン生成古細菌がCO₂をメタンに変換する際に、水素（H₂）を直接利用する代わりに油層水等をソースとするプロトン（H⁺）および反応系に印可ら

3. 結果
電圧0.75V印可した場合と、まったく印可しない場合のメタン生成量（mmol）の推移をそれぞれ示した。電圧非印可実験においてメタンの生成は見られず、一方、電圧印可したケースでは、ほぼ定常のメタン生成がみられ

図2 電気化学的メタン生成リアクター実験

図1 電気化学的メタン変換システム構想
れており、その生成速度は 386mmol/day・m² と算定された。また、この場合の電流-メタン変換効率は、ほぼ 100％と高い値を示した。

図3 八橋油田油層水を微生物源として
電気化学的メタン生成実験結果

また、印可電圧に対する電気化学的メタン生成活性を評価するため、当該リアクターに印可する電圧を 0.4〜0.8 ボルトまで変化させたうえでメタン生成量および電流-メタン変換効率を観測、測定した。その結果、図4に示したように、電圧の増加とともにメタン生成活性の上昇が見られ、また、どの電圧域においても 90〜100%程度高い電流-メタン変換効率が得られた。さらに実験後にカソード電極に付着している微生物群（古細菌および細菌）を同定解析した結果、古細菌は水素資化性メタン菌である Methanothermobacter、細菌については電子放出菌である Thermimincola が優占化していることが確認された。

一方で、Methanothermobacter 単菌のみの電気化学的メタン生成実験を実施したところ、メタン生成速度は 80 mmol/day・m²、電流-メタン変換効率は 20%以下と低い値を示した。当該メタン生成メカニズムを評価すべく、無菌コントロール下で同様な実験装置を使い、メタン生成実験を実施したところ、水素の生成が確認された。水素資化性メタン生成反応においては、1 モルの CO₂ と 4 モルの水素が反応することにより 1 モルのメタンが生成される（反応式 CO₂+4H₂ \[\rightarrow \] CH₄+2H₂O）ことから無菌コントロール実験で得られた水素生成量に 1/4 を乗じた値のブロットを Methanothermobacter 単菌のみの電気化学的メタン生成実験のメタン生成推移と比較してみると、代謝収支が両実験において整合する結果が得られた。

当該実験結果から、Methanothermobacter 単菌のみの電気化学的メタン生成は、電極表面で非生物的に水素ガスが発生し、その水素とリアクター内に充填されている CO₂ をメタン菌が利用してメタン生成を行っている可能性が示唆された。

以上の電気化学的な解析および微生物叢解析結果から、電気化学的メタン生成はカソード表面にバイオフィルムを形成した微生物群が寄与しており、そのなかで、八橋油田の油層水中に優占化して常在している水素資化性のメタン生成古細菌である Methanothermobacter 及び電子放出菌に分類される Thermimincola の共生的代謝ネットワークが当該メタン生成反応を触媒していると考えられた。（図5）

図5 八橋油田の油層微生物群による
電気化学的メタン生成の反応経路