CoMo触媒の構造と水素化活性の関連性の検討

(東農工大院 BASE) ○NGUYEN THANH TUNG・篠崎 晃
・今井 一成・齋永 弘之・村 巫華

1. 緒言
重油を触媒により分解し、軽油を製造する流動接触分解（FCC）プロセスが製油所で重要な役割を担っている。FCCプロセスでFCCガソリンの他に副生されるライトサイクルオイル（LCO）は主に2環以上の芳香族化合物を含む、硫黄・窒素化合物も多い。LCOを水素化精製し、軽油や軽油の基材に転換する技術や、LCOに含まれる芳香族化合物からの高付加価値単環芳香族化合物の製造技術が開発されている。しかし、既存の水素化精製触媒を用いた場合、硫黄化合物や窒素化合物を除去すると共に、芳香族化合物も水素化され単環芳香族化合物が得られない、また水素消費量が非常に多いという問題がある。従って、硫黄化合物や窒素化合物を除去し、芳香族化合物を単環まで選択的に水素化する、高い脱硫・脱窒素活性かつ制御した水素化活性の触媒の開発が必要である。

また、Rim-Egdeモデルにより硫黄化モリブデン触媒上の活性サイトはRimサイトとEdgeサイトの2種類があり、RimサイトはMoS2クラスターの最上部のみに存在し、水素化能及び脱硫活性をもつ活性サイトである。一方、Edgeサイトは最上部以外の層に存在し、脱硫活性のみをもつ活性サイトである。そこで、本研究ではRim-Egdeモデルに基づいて、水素化活性と触媒の構造との関連性を解明し、水素化能を制御する触媒の開発を目的とした。そのため、水素化性能をくわえる触媒の相補性・活性金属間の相互作用を検討し、分散状態を検討し、Al2O3にSAPO-11を添加した担体やクエン酸（CA）を添加した触媒の水素化能を検討した。

2. 実験方法
触媒は、CoMo系担持金属（CoO:3.3 wt%, MoO3:16.6 wt%）と、Al2O3のほか、市販のSAPO-11（Si/Al = 0.1）を添加したAl2O3・SAPO-11（SAPO-11の添加量：5 wt%, 20 wt%）担体を用い、さらにクエン酸（モル比 CA:Mo = 1:1）を添加して含浸法により調製した。得られた前駆体を120℃/2hで乾燥後、450℃/12hで焼成した。調製した担体や触媒の解析にはNH3-TPDやTEM等を用いた。反応前にH2S（5% in H2）を用いて、400℃/3hで予備硫化した。水素処理試験は固定床流通式反応装置を用い、5MPa, 280-380℃, Gas/Oil比 = 1125 Nm3/M3, WHSV39h-1の条件で実施した。4,6-ジメチルジペンゾチオフェン（4,6-DMDDBT）を硫黄化合物、アクリジンを窒素化合物、フェナントレンを三環の芳香族化合物のモデル化合物として、使用した。

3. 結果および考察
3.1 触媒キャラクタリゼーション
各担体のNH3-TPDによる酸量の測定結果をFig. 1に示した。担体の表面酸量はAl2O3、Al-SAPO-11（5%）、Al-SAPO-11（20%）がそれぞれ463.3, 365.2, 336.6 μmol/gでSAPO-11添加量により減少した。SAPO-11を添加した担体はアルミナに比べて低い酸量を示した。SAPO-11の添加では中・高温域にピークを持つ強い酸点のみが減少することが分かった。

![Fig. 1. NH3-TPD profiles of various supports](a) Al2O3, (b) Al-SAPO5, (c) Al-SAPO20)
次に TEM より、硫化した触媒中の CoMoS 活性相の長さと積層数を測定した。Table 1 に CA 添加有無 CoMo/Al₂O₃ 触媒の測定値をまとめた。CA 添加により、CoMoS 相のサイズも積層数も増加した。

Table 1. Length and number of layers of CoMoS phase on CoMo/Al₂O₃ and CoMo(CA)/Al₂O₃

<table>
<thead>
<tr>
<th></th>
<th>CoMo/Al₂O₃</th>
<th>CoMo(CA)/Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (nm)</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Number of layers</td>
<td>2.6</td>
<td>4.0</td>
</tr>
</tbody>
</table>

3.2 SAPO-11 添加効果

Table 2 には各種触媒の水素化脱硫(HDS)、水素化脱窒素(HDN)及び芳香族化合物の水素化反応(HDA)の結果をまとめた。CoMo/Al-SAPO5 の HDA 活性が CoMo/Al₂O₃ に比べ 4%減少したが、HDS 活性は 2%下がり、HDN 活性に変化がなかった。これは NH₃-TPD 結果で確認したように SAPO-11 の添加により、担体表面酸量が減り、担体と活性金属間の相互作用が緩み、Rim サイトが減ったからと考えられる。

3.3 クエン酸添加効果

CoMo(CA)/Al₂O₃ の HDS、HDN 活性が CoMo/Al₂O₃ のそれぞれ 2.9%、4%増加した (Table 2)。一方 HDA 活性も 22%減少した。CA 添加により、担持金属の分散性が高まり、CoMoS 相の形成・積層を促進し、Edge サイトが増加したと考えられる。これは TEM 結果と一致した。

3.4 SAPO-11 及びクエン酸両方の添加効果

CoMo(CA)/Al-SAPO20 の HDS、HDN 活性が CoMo/Al₂O₃ のそれぞれ 1.2%、3.9%増加した (Table 2)。一方、HDA 活性は 6%減少した。SAPO-11 と CA 添加により、脱硫・脱窒素活性が向上し、芳香族化合物の水素化活性が減少した。

引用文献

Table 2. HDS, HDN and HDA conversion over various catalysts (T = 340°C, P = 5 MPa, WHSV 39h⁻¹)

<table>
<thead>
<tr>
<th></th>
<th>Al₂O₃</th>
<th>Al-SAPO5</th>
<th>Al-SAPO20</th>
<th>Al₂O₃(CA)</th>
<th>Al-SAPO5(CA)</th>
<th>Al-SAPO20(CA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDS conversion (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87.7</td>
<td>85.7</td>
<td>70.4</td>
<td>90.6</td>
<td>93.0</td>
<td>88.9</td>
</tr>
<tr>
<td>Selectivity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylbiphenyl</td>
<td>44.6</td>
<td>38.1</td>
<td>39.7</td>
<td>36.4</td>
<td>38.8</td>
<td>37.9</td>
</tr>
<tr>
<td>Dimethylbicyclohexane</td>
<td>26.8</td>
<td>29.2</td>
<td>26.0</td>
<td>28.3</td>
<td>31.0</td>
<td>28.4</td>
</tr>
<tr>
<td>Methylcyclohexyltoluene</td>
<td>16.3</td>
<td>18.6</td>
<td>18.3</td>
<td>21.1</td>
<td>18.3</td>
<td>18.9</td>
</tr>
<tr>
<td>Other intermediates</td>
<td>12.3</td>
<td>14.1</td>
<td>16.0</td>
<td>14.3</td>
<td>11.9</td>
<td>14.8</td>
</tr>
<tr>
<td>HDN conversion (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>9.5</td>
<td>8.3</td>
<td>13.4</td>
<td>10.4</td>
<td>13.3</td>
</tr>
<tr>
<td>Selectivity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicyclohexylmethane</td>
<td>6.3</td>
<td>7.0</td>
<td>6.0</td>
<td>9.3</td>
<td>6.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Cyclohexylphenylmethane</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>4.1</td>
<td>4.0</td>
<td>5.6</td>
</tr>
<tr>
<td>Perhydrofluorene</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other intermediates</td>
<td>90.6</td>
<td>90.5</td>
<td>91.7</td>
<td>86.6</td>
<td>89.6</td>
<td>86.7</td>
</tr>
<tr>
<td>HDA conversion (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59.8</td>
<td>55.5</td>
<td>37.9</td>
<td>54.0</td>
<td>53.5</td>
<td></td>
</tr>
<tr>
<td>Selectivity (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octahydrophenanthrene</td>
<td>31.4</td>
<td>19.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Other products</td>
<td>68.6</td>
<td>81.0</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>