層状構造ニオブ酸・タンタル酸の
carbonyl-ene 反応における酸触媒特性

もとき ゆうた　むらこ えりか　よしのだ あきひろ　うえだ わたる
(神奈川大)　〇元木 恵太・村越 恵里佳・吉田 聡弘・上田 涉

1. 結言
ニオブ酸化合物は水中 Lewis 酸活性を有するなど、バイオマスで期待される固形酸触媒である。新たなニオブ酸化合物として、シュウ酸ニオビウムアンモニウム水溶液の水熱合成より得られる層状構造ニオブ酸（酸化ニオブ）という特殊な構造の酸化ニオブがある。本研究では水熱合成で得られた層状構造ニオブ酸（酸化ニオブ）及びタンタル酸（酸化タンタル）について、酸触媒活性評価を行い比較・検討を行った。酸触媒活性評価にはシトロネラールからシソブレゴールへの carbonyl-ene 反応を用いて、触媒の評価を行うことができる。

2. 実験
シュウ酸ニオビウムアンモニウム 6 mmol を水 40 mL に加え、室温で摂押し溶液を調製した。また、市販タンタル酸 3 mmol に水 10 mL、シュウ酸 15 mmol 及び 28%アンモニア水 0.4 mL 加え、100℃の加熱還流で溶解させたのち水 30 mL で希釈し、溶液を調製した。各溶液を 50 mL テフロン内筒オートクレープに入れ 175℃で 72 h 水熱合成を行い、分離・乾燥をし、各触媒を得た。

各触媒について、シトロネラールからシソブレゴールへの carbonyl-ene 反応により酸触媒活性を評価した。反応はトルエン 3 mL にシトロネラール 3 mmol と内部標準液に p-ジブロモペンゼン 50 mg を添加後溶解させ、反応前に 400℃で真空排気を行った触媒（0.15 mmol）を懸濁し、気相を Ar 置換してから 80℃で摂押を行った。生成物はガスクロマトグラフを用いた内部標準法により定量した。

3. 実験結果および考察
水熱合成したニオブ酸（酸化ニオブ）及びタンタル酸（酸化タンタル）の XRD パターンを Fig. 1 に示す。

Fig. 1 前処理後の各触媒の XRD

Table 1 各触媒の表面積と触媒反応結果

<table>
<thead>
<tr>
<th>触媒</th>
<th>Surface area [m²/g]</th>
<th>Conversion [%]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>層状構造タンタル酸</td>
<td>207</td>
<td>98</td>
<td>83</td>
</tr>
<tr>
<td>層状構造ニオブ酸</td>
<td>255</td>
<td>99</td>
<td>74</td>
</tr>
<tr>
<td>市販ニオブ酸</td>
<td>124</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>含水ニオブ酸</td>
<td>122</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>