アルドース還元酵素遺伝子過剰発現の醸造酵母のエタノール生産に与える影響

（J X日鉄石エネルギー）○上村 慎・小西 仁・福田 明・牟田口 優明

1. 緒言

CO₂排出量削減の観点から輸送燃料へのバイオエタノール利用が注目されており、セルロース系バイオマスからの生産が検討されている。しかし、エタノール生産に用いる酵酸酵母（Saccharomyces cerevisiae）は、セルロース系バイオマスから得られる糖の約1/3を占めるキシロースを発酵できない。このため、キシロース酸化性酵母由来の遺伝子導入による醸造酵母の改良が進められているが、遺伝子組換え酵母の利用には制限がある。一方、醸造酵母はキシロースを直接誘導する酵母を含めて、キシロースの酸化が可能である。これは、キシロース酸化能を付与した醸造酵母で、キシロースをキシロースに変換するアルドース還元酵素遺伝子GRE3をさらに過剰発現させた株について発酵性能を調べたので、その結果を報告する。

2. 実験

2.1 キシロース酸化能付与酵酸酵母の作製

醸造酵母のキシロース酸化性遺伝子であるGRE3、SOR1（キシロースをキシロースに変換する酵素の遺伝子）と、PGI（キシロースをキシロースに変換する酵素の遺伝子）をPGK1プロモーター下にタンデムに組み込んだ発現カセットを作製し、絶対細胞XYL2部位に導入し、キシロース酸化能付与醸造酵母を得た。

2.2 GRE3過剰発現株の作製

市販の発酵ペクターpAUR135に、PGK1プロモーター下に置いたGRE3を組み込んだものを用いた。このペクターを、2.1で作製したキシロース酸化能付与醸造酵母の染色体上AUR1部位に導入した株を、GRE3過剰発現株とした。また、ペクターのみを組み込んだ株を対照として用いた。

2.3 GRE3過剰発現株の発酵性評価

2.2で作製したGRE3過剰発現株は、YPD（グルコース2%）で前培養し、4%キシロースを含む改変CBS培地（CBSX培地、pH5.0）または、8%グルコースおよび4%キシロースを含む改変CBS培地（CBSDX培地）15mlを含む50ml栄三角フラスコで、初期菌量OD₆₀₀ = 20, 30℃, 140rpmで振付培養し、経時的にサンプリングを行い、発酵性を評価した。発酵代謝物は、Shodex SUGAR SP0810カラムを用い、HPLCにより定量した。菌体濃度は、分光光度計（λ=600nm）で測定した。

3. 結果および考察

GRE3過剰発現株は、キシロースを炭素源とするCBSX培地では、対照株よりもケイシロース消費速度が向上するものの、副生物であるキシロールの生成が増加し、エタノール収率が低下することがわかった。この株を炭素源としてグルコースとキシロースを含むCBSDX培地で培養すると、対照株と比べエタノール収率を低下させることなく、キシロース消費速度を向上させることができた（図1）。CBSDX培地ではグルコースの消費により糖酵素、ニコチンアミド・アデニンジヌクレオチド（NAD⁺）が供給されるため、副生物であるキシロールの生成が抑制され、エタノール収率の低下が起こらないものと推測された。

図1. CBSDX培地による培養評価

4. 謝辞

本研究は独立行政法人新エネルギー・産業技術開発機構（NEDO）の委託事業「セルロース系エタノール革新的生産システム開発事業」の一部として実施した。

引用文献
3）上村ら, 第42回石油・石油化学討論会講演要旨, 71(2012)