シリカ被覆金属触媒を用いた合成ガスから炭化水素合成

1. 緒言
合成ガス（H₂ + CO）からの炭化水素合成には、Cu-ZnO 触媒による合成ガスのメタノールへの変換と、続くゼオライト触媒によるメタノールの炭化水素への変換を組み合わせたプロセスがある。2 種の触媒を混合して用いることにより、生成メタノールが速やかに消費され、CO 転化率や効率的な炭化水素合成が可能となる。

ゼオライト触媒によるメタノール転換は、通常350℃以上の高温での反応が有利である。一方、Cu-ZnO 触媒では、高温でのシリングや反応中に生成する H₂O による劣化が懸念される。Cu-ZnO 触媒表面をシリカで被覆することで、シリングや H₂O の接触の抑制が期待できる。更に被覆により、ゼオライト上で生成したオレフィンが Cu-ZnO 触媒へ接触することを防ぐことで、オレフィンの生成も期待できる。本研究では、合成ガスから炭化水素の合成における Cu-ZnO 触媒表面へのシリカ被覆による効果の検討を行った。

2. 実験
Cu-ZnO 触媒は共沸法により調製した。調製した Cu-ZnO 触媒にメタノール、H₂O、シリカ重合剤としてトリエチルアミン (TEA)、架橋剤として 3-アミノプロピルトリメトキシシラン (APS) を加え、130℃で摂拌した。その後、シリカ源であるテトラエチルシラン (TEOS) を加えて摂拌し、分離、洗浄、乾燥を行った。
合成ガスから炭化水素合成は、固定床連続反応装置により行った。Cu-ZnO とゼオライト触媒として SAPO-34 を混合して充填し、350℃、3h 避醚後、合成ガス (H₂/CO = 2) を W/F = 9.7 g-cat·h·mol⁻¹ で供給し、2.5 MPa で反応を行った。反応生成物の分析は GC-FID、GC-TCD により行った。

3. 結果及び考察
合成ガスからの炭化水素合成において、320℃から500℃まで逐次的に温度を上昇させ反応を行った。360℃以上において低級オレフィンであるプロピレンが生成した。360℃における反応経時変化を Fig.1 に示す。被覆していない Cu-ZnO 触媒を用いた場合、反応開始後 5 h においても 72%の CO 転化率を示し、低級パラフィンと CO₂が主生成物となった。

被覆 Cu-ZnO 触媒を用いた場合は、CO 転化率が 20%程度であったが、反応開始後 2 h までプロピレンの生成が見られなかった。Cu-ZnO 触媒表面を被覆したことで、ゼオライト上で生成したオレフィンが Cu-ZnO 触媒に接触しにくく、水素化されずに系外へ拡散したと考察される。

更に、被覆条件の検討を行った。シリカ源となる APS と TEOS の比を APS/TEOS = 0.67、3.5、TEOS のみ、APS のみ、で被覆した。TEOS のみではパラフィンのみの生成となり、APS の増加に伴いプロピレンの選択性は高くなった。しかし、APS のみでの被覆ではメタノールのみが生成し、オレフィンの生成は見られなかった。このことから、TEOS と APS どちらも必要であり、APS の割合を増加させることでオレフィンの選択性が向上した。また、Cu-ZnO 触媒に対する Si 量を Si/Cu-ZnO = 2.97 から 7.88 に増加させることで、反応開始後 3 h までプロピレンが生成し、選択性も向上した (Fig.2)。以上から、シリカ源が多いほど被覆が容易に行え、架橋剤を増加させることで Cu-ZnO 触媒表面に効果的にシリカによる被覆が行えたと考えられる。

Fig. 1 360℃における炭化水素合成
(a) 被覆なし Cu-ZnO 触媒
(b) 被覆 Cu-ZnO 触媒 (Si/Cu-ZnO = 2.97、APS/TEOS = 0.67)

Fig. 2 被覆触媒を用いた炭化水素合成
(Si/Cu-ZnO = 7.88、APS/TEOS = 3.55)