加圧焼結現象としての雪の圧密の研究（I）

海老沼孝郎 前野 紀一*

1. またがき

雪の密度が時間とともに増加する現象、すなわち圧密（densification）現象の第1の原因は、自重あるいは外部からの機械的な圧縮による粒粒子の充填状態の変化、すなわち氷粒子の再配列であるが、同時に氷粒子の結合の発達及び空隙の減少という熟的過程が関与している。氷粒子間の結合が発達する物理的機能は、焼結（sintering）と呼ばれる固相反応である。

焼結は、粒子間の接触部に物質が輸送される現象で、その駆動力は、物質輸送の始点と終点における表面自由エネルギーの差である。氷の焼結現象の実験的研究では、2 個の氷粒子間の結合の発達に関して行われている（Kingery, 1960; Kuroiwa, 1961; Hobbs and Masson, 1964)。焼結機構が考察されたが、結論は一致していない（前野, 1981; Maeno and Ebinuma, 1983)。氷粒子の焼結には、単一の物理機構が関与しているのではなく、複数の物理機構が温度や結合の状況に応じて関与していることを、焼結機構図（sintering diagram）を作製することによって示した。

雪の圧密過程における氷粒子間の焼結には、駆動力として、表面自由エネルギーの差のほかに、自重あるいは外力による圧力をも加えなければならない。したがって、snow の圧密過程は、粉末冶金やセラミックスの分野で研究されている加圧焼結（pressure sintering、あるいは hot press）の現象とみなすことができる（前野, 1981; Maeno and Ebinuma, 1983)。

本研究の目的は、種々の圧力下における氷の焼結過程を観察し、加圧焼結の立場から、氷の焼結機構及び雪の圧密機構を明らかにすることにある。氷の加圧焼結の実験は、密度の增加速度を氷粒子の純度、粒径、温度及び圧力の関数として行なわれた。本論文では、主に温度及び圧力依存性に関する実験結果について述べる。

2. 実験と実験方法

実験に使った氷粒子は、蒸留した後イオン交換樹脂を通した純水（±25°C での電気伝導度 1.755 μS/cm）を、電動式噴霧器（日立 BS-1000型）で微小水滴として、液体中に落下させ、急速凍結させたものである。写真 1 に、氷粒子の薄片写真の一例を示す。ほとんどの氷粒子は、球形の多結晶氷である。実験には、ふるいで粒径をそろえた氷粒子を用いた。ただし、本報告では、平均直径 199 μm（標準偏差 51 μm）の氷粒子についての測定結果について述べる。

図 1 は、実験装置の概略図である。氷粒子は、内径 2.0 cm のアクリル製の中空円筒容器に充填され、一定荷重で一軸圧縮された。荷重は、試料上部に一定質量の鍬形を置くことによって加えられた。実験を行なった荷
重は，試料表面の圧力として，2.0, 1.5, 1.0, 0.8, 0.6, 0.5 及び 0.4 MPa である (0.1 MPa = 1 bar)。実験装置全体は，恒温槽の中に設置され，内部の温度は，恒温装置（HAAKE KT33型）によって温度調整された冷媒を循環させることによって，±0.5℃の精度で長時間保たれた。実験を行なった温度は，−9, −15, −25 及び −40℃の4点である。ただし，−40℃の実験のみは，装置を設置した低温室全体の温度を −40℃ に設定して行なった。

試料の密度の時間変化は，変位変換器（共和電業 DT 型）と動圧測定器（共和電業 DPM-110B）を用いて，圧力を加えてからの試料の厚さの時間変化を測定し，ペンレコーダ（横河電機 3056型）に記録して求めた。試料内部の圧力状態を知るために，いくつかの試料について，直径 6 mm，厚さ 0.6 mm の円板型圧力変換器（共和電業 PS 型）を内部に設置して，鉛直圧力の測定を試みた。
試料の厚さ、質量及び断面積を、それぞれ h, m 及び s とすれば、試料の密度 ρ は、$\rho = m/hs$ で与えられる。密度の増加速度、つまり圧密の歪速度 i は、次のように定義される:

$$i = (1/\rho) \cdot dp/dt = -(1/h) \cdot dh/dt.$$ \hspace{1cm} (1)$$

m と s は、加圧焼結の実験中変化しない。

密度の時間変化は、後で示すように、実験の初期大きく、その後次第に減少する。したがって、圧密の歪速度を求めるための時間間隔は、実験開始後約1時間は、1〜10分と取り、それ以後は順次長くし、測定全体が数10時間に及ぶときには、最大2時間まで取った。この論文で用いる歪速度は、実験初期では、1〜数分の、そして実験終期では、1〜数時間の平均を意味する。ある時刻（あるいは密度）での歪速度の計算には、時系列を各々前後7個のデータを用いて、最小2乗法によって4次式を決定した後、その中央点の値を用めるダグラス・アバキアン法を用いた。

3. 実験結果

(1) 密度の変化と圧密の歪速度

図2(a), (b), (c) 及び (d) は、それぞれ温度 -9, -15, -25 及び -40°C における密度の時間変化である。パラメータは、外部から加えた圧力である。圧力を加えた直後の初期密度は、容器への試料の充填具合や荷重の

\[\text{図 3 圧密の歪速度を密度とはの関係。パラメータは圧力}\]
加え方にも依存するが、温度も強く依存する。しかし、\(-15^\circ\mathrm{C}\)の初期密度が他より、ばらつきが大きいのは明らかではない。

図2において、密度は、圧力が高いほど、また温度が高いほど速く増加する。たとえば、\(2.0\ \mathrm{MPa}\)の圧力を加えた場合、5時間後の密度は、\(-9^\circ\mathrm{C}\)では約800 kg/m\(^3\)であるが、\(-40^\circ\mathrm{C}\)では約650 kg/m\(^3\)にすぎない。ただし、\(-40^\circ\mathrm{C}\)では、\(1.0\ \mathrm{MPa}\)の密度が、\(1.5\ \mathrm{MPa}\)より大きくなっている。これは、試料の充満具合の相異によるためであろう。

図3(a), (b), (c)及び(d)は、密度の時間変化から求めた圧密の歪度(4)と密度との関係である。歪度の対数と密度との関には、近似的に次式の直線関係が成り立つ:

\[\log z = -ap + b \] \hspace{1cm} (2)

\(a\)と\(b\)は定数である \((a>0)\)。\(-9^\circ\mathrm{C}\)の\(1.0\ \mathrm{MPa}\), \(-15^\circ\mathrm{C}\)の\(0.4\ \mathrm{MPa}\)~\(1.5\ \mathrm{MPa}\)及び\(-25^\circ\mathrm{C}\)の\(0.5\), \(1.0\), \(1.5\ \mathrm{MPa}\)には折れ曲がりがあり、2本の直線、すなわち2個の定数\(a\)で近似される。これは圧密（加圧焼結）が進むす
加圧焼結現象としての雪の圧密の研究（I）

加圧過程で物理構造が変ったことを示唆する。これについては、後で詳しく述べる。

（2）試料の構造変化

写真①(a), (b), (c) 及び (d) は、圧密した後に作製された薄片の顕微鏡写真である。密度 701 kg/m³ では、まだ球状の水粒子の存在が確認できるが、密度が更に増大すると、水粒子間の結合が発達して、球状の形は失なわれ、網目構造になる。さらに密度が増大すると、空隙は細長い形状となり、最終的には孤立化する。

図々々の水粒子が識別できる密度範囲（約 750 kg/m³ 以下）の薄片試料について、水粒子の粒径分布及び水粒子の 2 次元的配位数（1 個の水粒子に接触している数個水粒子の個数）を求めた。図 4 は、密度 684, 706 及び 726 kg/m³ の試料の粒径分布を累積度数分布で示したものである。△印は、容器に充填する前の粒径分布である。密度の小さい試料の平均粒径は、実験開始前のそれ（199 µm）よりも小さく、密度の増大とともに、大きな水粒子の割合が増えている。したがって、圧力を加えた直後、機械的充填とともに水粒子の破壊が生じたこと、また、その後水粒子の成長あるいは微小粒子の相対的消滅の起こったことが分かる。

2 次元配位数の測定は、温度 -25°C, 压力 2.0 MPa で加圧焼結された、密度 678, 691, 704, 717 及び 719 kg/m³ の試料について行なわれた。測定方法は、本間 (1960) と同様に、薄片写真の網目構造に中心線を記入して、交差する中心線の本数を調べるものである。図 5 は、密度と 2 次元平均配位数との関係である。密度の増加にともなって、2 次元配位数は増大する傾向を示している。

4. 考 察

（i）実験内部の圧力状態

加圧焼結の進行速度は、圧力に依存するので、試料内部の圧力状態を考察する必要がある。本実験においては、水粒子と側壁との摩擦により、厚さ方向に沿って、鉛直圧力分布が発生する可能性がある。三輪 (1980) によれば、容器に充填された粉体を加圧する場合には、側壁と粉体との摩擦のために、鉛直圧力は、粉体表面から指数関数的に減少する。試料の厚さの直径に対する比が小さいほど、減少の程度は小さい。

本実験においては、この比が 0.5% 以下にされている。図 6(a) (b) は、試料の底面及び中央部に微小圧力変換器を設置して測定された鉛直圧力である。いずれも外部から加えている圧力は 0.5 MPa である。この測定中、試料の厚さは、(a) の場合は 8.72 mm から 7.55 mm に、(b) の場合は 7.60 mm から 6.91 mm に変化した。このように、加圧開始直後、加えた圧力と試料内部の実際の圧力との差は大きいが、その後徐々に減少する。図 6 に示した実測値と、外部から加えている圧力との差は、最大でも約 20% である。したがって、本実験では、試料内の圧力分布は無視し、試料全体は均質であるとして以後の解析を行なった。

（2）圧密の限界密度

雪の圧密を、加圧焼結の現象と考えるとき、圧密の歪速度 ε は、複数の加圧焼結機構による寄与の和と考えられ、

\[\varepsilon = \varepsilon_{re} + \varepsilon_{dis} + \varepsilon_{air} \]

と書き表される。ここで、\(\varepsilon_{re} \), \(\varepsilon_{dis} \) 及び \(\varepsilon_{air} \) は、それぞれ水粒子の再配列、転位クリープ及び拡散クリープによる歪速度である。再配列は、水粒子の充填状態の変化
を意味し、降伏による変形、水粒子や結合部の破壊であるいはすべりなどによって起こる。転位クリープは、転位の移動による塑性変形を、また拡散クリープは、空孔あるいは格子間分子の格子拡散及び粒界拡散を意味する。

また、圧密の歪速度は、圧力（P）、温度（T）及び内部構造（S）の関数と考えられる：

\[\dot{\varepsilon} = f(P, T, S) \]

ここで、内部構造とは、密度、水粒子の粒径、充填状態などである。圧力と温度を一定に保った実験で得られた歪速度 \(\dot{\varepsilon} \) は、内部構造 \(S \) のみの関数である。内部構造 \(S \) の指標として、密度 \(\rho \) を採用するならば、図3で示された直線の傾き、すなわち定数 \(a \) の変化は、圧密の物理的機構が変わるかを示していると解釈できる。この密度を、限界密度と呼ぶことにする。

図7(a)と(b)は、限界密度に達する前と後において、

(2)式で近似して求めた \(\alpha \) の圧力依存性である。パラメータは温度である。温度 -25℃、圧力 0.8 MPa 及び温度 -40℃ の 3 例は、限界密度に達していないと仮定した。\(\alpha \) の大きさは、圧密機構の密度（内部構造）に対する依存度を示している。限界密度に達する前の \(\alpha \) の値は、限界密度に達した後の値よりも大きく、圧力に対する依存性も大きい。つまり、限界密度以下の密度領域における圧密機構は、密度（内部構造）に対して大きく依存し、圧力に対しても依存性が大きい。この領域では、温度に関しても、明確な差がみられ、温度が低いほど密度（内部構造）及び圧力に対する依存性が大きい。

以上の結果から、限界密度に達する前は、内部構造に敏感な水粒子の再配列機構が卓越していることが推定される。この結果は、2 次元配列数の測定結果によっても支持される。図5において、密度の増大とともに、2 次元配列数が増加する傾向にあることは、水粒子の充填状態がより密になることを意味しており、再配列機構が卓越していると解釈できる。一方、限界密度に近づくと、薄片写真の各水粒子は識別できなくなるが、これは、限界密度に近づくにつれて、内部構造が強固になることを示しており、粒子間の結合の発達も同時に進行していることが分かる。

限界密度の存在は、水粒子の充填状態がある密度で一つの安定の状態に達することを示唆する。図8は、限界密度と圧力の関係で、パラメータは温度である。一定温度の結果を比較すると、圧力が増大するにつれて、限界密度は増大する。しかし、圧力が一定の直後に密度が 700～750 kg/m³ に達する実験 (2 MPa (−9、−15℃) と 1.5 MPa (−9℃)) では、限界密度は認められない。高圧、高温の場合は、限界密度が明瞭に表われないのは、密度変化が急速に進み、荷重を加えた直後に限界密度を超えるためである。

限界密度の大きさは、粒子間結合部の発達速度と再配列作用の活発化により決定される。つまり、粒子間の結合の発達は再配列過程に対する抵抗として働くが、両者
は圧力に対して互いに独立に依存する。したがって、加熱されている圧力下で、球状粒子として力学的に不安定な充填状態においても、仮に結合部の発達速度が十分に速ければ、安定な内部構造になり得る。図 8 の結果は、圧力の増加は、結合部の発達速度の増大による内部構造の安定化作用よりも、粒子の再配列促進の作用の方が大きいことを示す。しかし、圧力の増加とともに、再配列過程により達成される密度に最大値（700～750 kg/m³）がある。この最大値は、氷粒子の充填状態の一つの極限状態を与えることを示唆する。限界密度の最大値 700 ～ 750 kg/m³ は、南極のポーリングコア雪の研究で見出された氷粒子の合体の極限状態の密度 730 kg/m³ に近い（前野，1981）。

(3) 限界密度以上の圧密

限界密度以上の密度範囲では、各々の氷粒子は互いに位置を変えることができる。その為、この領域の圧密は、主として氷粒子のクリープで進行する。加圧焼結の理論によれば、転位クリープと拡散クリープによる機構が卓越すると考えられる。Maeno and Ebinuma (1983) は、転位クリープに、Wilkinson and Ashby (1975) の式を、また拡散クリープには、Coble (1970) の式を用いて、氷の加圧焼結機構図（pressure sintering diagram）を作製した。加圧焼結機構図は、任意の条件（粒径、圧力、温度、密度）における圧密の歪速度、及び圧密を起こす最良の物理機構を示すことを総合的に示す。図 9 は、温度 -25℃、半径 100 μm の氷粒子に関する加圧焼結機構図である。この図によれば、本実験範囲（0.4～2.0 MPa）は、ほとんどの転位クリープの領域に入る。しかし、密度の増加とともに、粒界拡散機構も重要となる。次に、実際に測定された圧密の歪速度と理論値との比較を行なってみよう。用いた式と物性値は、Maeno and Ebinuma (1983) と同様なので、再録は省ける。

密度が 750 kg/m³ 以上に達した 4 例（-9℃、2.0 MPa と 1.5 MPa、-15℃、2.0 MPa、-25℃、2.0 MPa）について、実験結果と理論値との比較を試みた。一般に、雪から氷への変化は、密度 820 ～ 840 kg/m³ で起こると考えられている。転位クリープの理論では、密度 840 kg/m³ 以下に中期段階のモデルを、840 kg/m³ 以上に終期段階のモデルを適用した。空隙の形状を、中期段階では円筒形に、終期段階では球にモデル化している。終期段階の密度に達したのは、温度 -9℃、圧力 2.0 MPa の 1 例である。

図 10 は、温度 -9℃、圧力 2.0 MPa（中期段階、終期段階）及び圧力 1.5 MPa（中期段階）の比較である。図 11 は、温度 -15℃、圧力 2.0 MPa 及び温度 -25℃、圧力 2.0 MPa それぞれの中期段階の比較である。比較を行なった密度範囲では、実験結果は転位クリープの理論値に近く、拡散クリープの値よりも 1 ～ 3 倍大きい。しかし、密度約 840 kg/m³ 以上では、拡散クリープと転位クリープの理論値は同じオーダーになる。したがって、一般に転位クリープの寄与が大きいが、終期段階では、拡散クリープの寄与も大きくなると考えられる。これは、試料中の空隙が孤立化し、気泡内の空気圧が増加す
結果、転位クリープの駆動力が減少し、相対的に拡散クリープの寄与が大きくなるためと考えられる。転位クリープの理論曲線には、密度 840 kg/m³において、不連続が存在する。しかし、実際には、空隙の孤立化は、かなりの密度範囲において徐々に起こるために、実測歪速度に急激な変化は見られないであろう。

5. まとめ

温度 -40℃〜-9℃、圧力 0.4 MPa〜2.0 MPa の範囲で、氷粒子の加圧焼結という観点から、雪の圧密の実験を行なった。圧密の歪速度の対数と密度との関係は、近似的に直線関係が得られ、比例定数の変化が限界密度と定義された。限界密度以下では、クリープ機構のみならず氷粒子の再配列が著しいのに対して、限界密度以上では転位クリープの寄与が卓越した。気泡が孤立化した後は、拡散クリープの寄与が次第に大きくなると解釈された。したがって、限界密度以上の密度領域、氷粒子の再配列機構とクリープ機構の遷移領域と考えられる。

密度 700 kg/m³〜750 kg/m³ に、限界密度の最大値が存在するようである。このことは、氷粒子の充実、安定な極限状態の存在を示唆する。この極限状態は、南極みずは基地の雪氷試料に関して見出された密度 730 kg/m³の特異点に相当するのかかもしれない（Narita et al., 1978; 前野, 1981）。今回の実験によれば、極限状態（限界密度）は、再配列機構とクリープ機構の兼合で決まると考えられる。したがって、極地雪氷の圧密における極限状態の密度は、各場所の気温、堆積速度などの気候条件に依存する可能性がある。

謝辞

本研究は、著者の一人（海老沼）が北海道大学大学院理学研究科修士課程地球物理学専攻の修士研究として行なった仕事の一部である。お世話になった石田先生北海道大学名誉教授、並びに低温科学研究所気象学部門の皆様に感謝いたします。本研究に要した費用の一部は、文部省科学研究費補助金及び国立極地研究所共同研究費から支弁された。

引用文献

Kingery, W. D., 1960: Regelation, surface diffusion,
Studies on the densification of snow as a pressure sintering process (I)

Takao Ebinuma and Norikazu Maeno

Institute of Low Temperature Science, Hokkaido University, Sapporo, 060

Abstract: The densification of natural snow is regarded as a compaction and sintering process under the pressure of overlying snow, that is, pressure sintering or hot pressing. Pressure sintering experiments of ice particles were carried out in a temperature range -40°C to -9°C and pressure range 0.4 MPa to 2.0 MPa. The densification rate of a sample was measured and its thin sections were made after removing pressure. It was found that by the time a density of about 750 kg/m3 was attained, bonds between ice particles grew considerably so that each ice particle became indistinguishable. Then voids changed into isolated spherical pores. Logarithms of densification rate were proportional to the density, and their slopes were found to change at a critical density. Predominant mechanisms were concluded to be the rearrangement of ice particles as well as the creep below the critical density, and dislocation creep above it. Diffusional creep was also considered to contribute, especially after the close-off of pores.

(1984年7月13日受理，9月21日受付)