論文

氷單結晶の繰返し反転曲げ変形

福田明治1), 米川安江2), 長谷川裕則3)

要旨

氷単結晶の試験片に片持梁荷重を掛け、曲げ変形を行う。角棒が曲がったとき、荷重の掛ける方向を反転する。これを繰り返して、加工硬化を調べた。その結果、加工硬化は全く起こらなかった。これは氷の塑性変形は六方晶面上のバーガースベクトルαをもつ転位が発生し、底面を運動するので成される。しかし、六方晶のc軸方向のバーガースベクトルをもつ転位が全く発生しない。よって、転位の格子合いがないためであると結論された。

キーワード: 氷単結晶、繰返曲げ変形、加工硬化、転位

Key words: ice single crystal, alternating bending, work hardening, dislocation

1. はじめに

結晶物質の塑性変形は主として転位の運動によって成される。しかし、物体内の各領域での転位の分布や速度の確定は難しい。よって、物体全体の変形を転位の挙動で詳細に説明することは難しい。

氷の塑性変形の観察は数多くある。また、氷の転位の分布や運動の観察も数多くある。しかし、塑性変形と転位の挙動を結びつける研究はあまりない。

針金を繰り返し曲げ変形をすると、次第に硬くなり、終わりには折れてしまう。この硬くなる現象を加工硬化という。これは変形により転位が増殖し、転位密度が高くなるが、転位の絡み合いがおこり、運動できる転位の数が減る、このため、ひずみ速度が小さくなる。ひずみ速度を同じにするためには、応力を小さくしなければならないので、硬くなったことになる。これが加工硬化である。

本研究では、氷の繰り返し曲げ変形による加工硬化を調べ、これを転位の挙動と結びつけること

1) 室蘭工業大学材料物理工学科

2) 呑美セイエンジニアリング

3) TDCソフトウェアエンジニアリング（株）

図1 実験装置の概略。
験片支持器具，P の滑車，D のインダクタンス型変位ゲージは鉄アングルで組んだ枠組みに固定されている。M の器具は、試験片を挟むように配置された 2 つのくさび型金具から成っている。この器具 M は、図に示すように、3 本のねじ線ワイヤーにより宙吊り状態になっている。M の下部には 2 本のワイヤーがあり、1 本は変位ゲージ D の可動部に繋がっている。もう 1 本は 2 つの滑車を通り重りをかけたフック A に繋がっている。M の上部のワイヤーは 2 つの滑車を通り、変位ゲージの可動部による荷重を相殺する重り W をつけ、フック B に繋がっている。フック A, B から器具 M までのワイヤーの長さは 65 cm 程度とした。これにより重りをかけるときの衝撃を、ねじ線ワイヤーヨの弾性的な伸びを利用して和らげるためである。

この装置全体は発泡スチロールで作った箱に入れ、温度 -22 〜 -18°C の低温室に設置した。この箱は、氷屑を霜を入れて試験片の昇華を出来るとだけ防ぐため、実験者や他者の低温室への出入りによる一時的な低温室の温度変化を緩和するために用意したもので、内部の温度制御はしていない。変位ゲージ D で測定された変位は、低温室外に置かれたストレインアンプを通し多ビンレコーダ R で、記録紙に記録した。試験片近傍の温度は熱電対で測定し、他のアンプをとおし、多ビンレコーダ R に同時記録した。

2.2 試験片
試料の氷単結晶は、本研究室で、引き上げ法によって C 軸方向に成長させたものであり、形状ほぼ円柱形で、直径 10 〜12 cm、長さ 10 〜12 cm である。

この試料をバンドソーで切り、アルコールで研磨し、長さ 5 〜6 cm、正方形断面の 1 辺長 7.3 〜7.5 mm の角棒状にしあげ、アルコールをヘクサソーで洗い落とし、ヘクサソール蒸発させて試験片とした（図 2 参照）。

2.3 実験方法
図 2 に示すように、試験片の C 軸を上下方向とし、荷重をかけるくさび型金具から試験片の一端（自由端部）が 7 〜8 mm でるようにし、くさび型金具から支持器具まで 30 〜35 mm を変形部分とし、残りの部分（固定部分）を固定する。

3. 実験結果
3.1 変形形状
荷重を反転させる直前の形状を観察した。図 2 の下に示すように、試験片の固定部分 f は変形前の形を保っている。変形部分の固定部分に繋がっている部分では互いに逆向きの 2 つの扇形 g, h になっている。くさび型金具のところも扇形 j になる。扇形部 h と j の間は直線的な形 i となっている。くさび型金具の外側の自由端部 k は変形しない。

固定端側の扇形部の g は、試験片による違いは殆どがないが、h は g をそのまま反転させた形から、領域が広く、直線部と区分けがつかない形まで種々ある。自由端側では、直線部 i, 扇形部 j, 自由端部 k と並んだ形状は、氷単結晶の容易すぺリ方位での 3 点曲げ（中谷, 1958; Higashi et al., 1965）でよく知られている形と類似している。
荷重方向を反転させると、変位0あたりでは試験片の変形は全体にほぼ直線的になる。つまり、扇形g, h, jは消滅する。さらに変形を続けると、形状は図2を上下に鏡面対称したものとほぼ同じになる。

3.2 レコーダー記録の処理

この変形装置および測定システムでは、かなりの雑音を拾い、レコーダー記録紙上の曲線はぎざぎざになる。このぎざぎざの曲線の、ある時刻の変位の値は、その時刻の前後の曲線の状況から決め、これをグラフ用紙にプロットした。プロットする時刻は各回の反転変形を要した時間を20 〜 25 に等分割して決めた。したがって、変位の大きい反転初期のところではこの間隔を更に分割した。そして、変位速度は間合う2つの変位プロットの値の差をこの間に要した時間で割って得た。

3.3 变位と変位速度

例として、図3に、7.5 mm 角で変形部分の長さが34 mm の試験片を23 回反転した結果を、先に述べた処理をして、プロットした変位を上側に示し、この変位から得た変位速度の絶対値を下側に示し、時刻は一致させている。ただし、誌面制限のため8回分を省いてある。V と記した最初の変形と1 回目の反転変形は目的の変位に達するのに長い時間を要したので、2 回目以降の時間間隔より、間隔を詰めてある。

初期変形Vの変形曲線は、Higashi et al., (1965) による3点曲げと似顔似してい。しかし、我々の実験での最大ひずみは、彼らの実験における変形曲線が直線になるひずみの、約1/2 に止めてある。そこで、変位速度は終りまで、増加を続けている。

反転変形の変位速度は緩やかなS字形になってい。これを見位速度でみると、反転直後は変形速度が極めて高く、急激に低くなり、変位0 mmあたりで最低となり、その後、速度は高くなっていく。この速度増加は、変形回数が多くなってくると、止まり、速度が一定になる傾向がある。つまり、変位曲線は直線になっていく。この変位速度が一定になる傾向は変形部分cの短い試験片に顕著である。

各反転変形の全変位をこの変形に要した時間で割った平均速度を図4に示す。この図では平均速度が常々増加するように見える。しかしこの23 回目の反転を終了するまで約140 時間を要し、試験片は昇華により細くなっている。このことを考慮すると平均変位速度は13 回あたりからは飽和するとみられる。

4. 考 察

4.1 試験片の応力場

理想的な片持梁の応力場は、荷重 L, 面外 a×a で、図5上段の座標で表すと

\[
\sigma_x = \frac{12 L y v}{a^4}, \quad \sigma_y = 0
\]

\[
\tau_{xy} = \frac{3 L}{2 a^2} \left(1 - \frac{4 y^2}{a^2} \right)
\]

となり、垂直応力は図5中段のように、x 方向については、固定端のところで最大で、荷重端で0 となる。y 方向については、図の荷重方向で、上表面で引っ張り応力最大で、中央で0 になり、下表面で圧縮応力最大となっている。せん断応力は図5下段のように、x 方向については、y 方向については、下表面で0、中央で最大となっている。

本実験では、理想的な片持梁とは幾分異なる。とくに、自由端側においては、くさび型金具による集中応力があり、これが転位の発生に関わる。しかし、試験片の変位に大きく関わるのは固定端近傍の曲がりである。また、くさび型金具近傍を除くと近似的に片持梁の応力と考えられる。

上の記の片持梁は内部応力が全くなない試験片に荷重をかけた直後の応力場である。この応力場により塑性変形が始まると応力場が変わっていく。固定端近傍の応力は初め図6 (a) の点線である。この応力下では、上表面で大きな引っ張り応力があるので、塑性伸び変形が始まる。下表面は大きな圧縮応力があるので、塑性縮み変形が始まる。この塑性変形によりこの部分では弾性応力が減少する。このため、曲げモーメントが減少することになるので、これに支える両表面から内側の応力が高く、内部に向かって塑性変形が進む。結果的に図6 (a) の実線のような応力場に近づいていく。この状態では、荷重による外部応力と図6 (b) の内部応力の重ね合わせとなって
図3 変位と変位速度.
時間については上段は時、下段は秒で表示。
図4 平均変位速度．
各回の変位（約10mm）をこの変形に要した時間で割った値．

図5 応力分布．
上段：式を表すための座標，中段：垂直応力の分布，下段：せん断応力の分布．

図6 塑性変形による応力場の変化．
a：塑性変形が進行したときの応力，b：荷重をとったときの内部応力，c：反転荷重をかけたときの応力．

図7 転位の導入．
1：刃状セグメントの運動によるらせん対の形成，2：底面内に限定された転位．

ていると考えられる．このような，内部応力は刃状転位の分布で可能となるが，ここでは詳細は記さない．

荷重を反転させると，図6（c）の点線の応力がかかるので，実際の応力は，これと図6（b）の重ね合わせの応力，図6（c）の実線の応力になる．つまり，反転変位の表面近傍の垂直応力は変形が進んだ図6（a）の実線で示した応力の2倍程度となる．せん断応力は上下表面で0でなければならないから，分布については大きな変化はないとする．

4.2 転位の導入と運動

転位が氷結晶内に導入されるには2つの型がある，1つは図7の1の型で，短い刃状転位がブリズム面上を運動し，後にらせん転位の対を形成しつつ導入され，本実験ではσ_yの分解せん断応力によるものである（以後，1型とする．Fukuda and Higashi, 1973）．もう1つは図7の2の型で，
底面状に導入され，τ_{xy} によるものである（以後，2型とする）。1型の，プリズム面上を運動する短い刃状転位の速度は，底面上を運動する転位の速度より，同じ大きさのせん断応力に対し，一桁高いう（Hondoh et al., 1990）。よって，短い刃状転位はやがて結晶から抜け出て，正負のらせん転位を残す。このらせん転位と2型の転位はせん断応力 τ_{xy} により底面内を運動する。これらの転位は，底面内に大きく拡張しているので（福田，1985），運動している結晶面を殆ど変えることがない。また，これらの転位は固定端の扇形部分およびくびざみ型金具のところの扇形部分では，図5のx軸とy軸に垂直な方向（z方向）に平行になり，らせん成分が互いに相殺し，刃状成分による小傾角境界を形成する（福田ら，1977）。このことを底面に垂直方向から見た1型転位の状況を模式的に示したものが図8である。b_1, b_2 のバーガース・ベクトルの転位が平行になったとき，各転位のらせん成分s は互いに反対符号なのでひずみは相殺される。刃状成分e は同符号なので加算される。よって，曲げひずみを形成することに寄与する。2型については，b_1, b_2, b_3 のバーガース・ベクトルの転位が導入されるが，b_1, b_2 の転位は1型と同じ混合転位であり，b_3 は刃状転位となる。

4.3 試験片の変形と転位
初期変形Vでは1型と2型で転位を導入し，図6で示した応力場を形成し，底面上の転位は τ_{xy} の応力でバーガース・ベクトルの正負により互いに反対方向に移動し，図10（a）のように，それぞれが固定端とくさび型金具のところで，小傾角境界からなる扇形部分を形成していく。

試験片の変位速度と変形部分の長さの比から，近似的に公称ひずみ速度が得られ，これを$\dot{\varepsilon}$ とすると，Orowanの式により

$$\dot{\varepsilon} = b \rho v$$

となる。ここで，b はバーガース・ベクトルの大きさ，ρ は可動転位密度，v は可動転位の平均速度である。

荷重を反転させるまで，扇形部を形成した転位は，動きなくなるので，ρ を観察する。つまり，変位速度を低くするように働く。しかし，初期曲線では，変位速度が高くなり続けているので，変形部でこれを上回る転位の増加が行われていることになる。

反転変形の繰り返し回数が十分になったときの変位速度の様子を曲線で示したものが図9である。反転直後の変位速度は，その前の変形の終了時の速度よりもはるかに高い。これは，図10（b）のように，扇形部の小傾角境界が一斉に運動を始める（Higashi and Sakai, 1961）ことと，図6（c）の応力による1型転位の導入によるρ の瞬間的増大によるものである。これらの転位は変形部にあった反対符号の転位および新たに導入された転位と合体消滅する。よって，ρ が減少し急速に変位速度が減少する。変位速度が減少することは試験片が硬くなることである。加工硬化のようにみえるが，可動転位の減少というよりも，結晶中の全転位の実質的減少であるから回復による硬化である。

回復が次第におさまる一方新たな転位導入によるρ の増加により変位速度が高くなっていく。転位の増加量と扇形部分を形成して不動転位となる量が同じになってくると変位速度は一定になってくる。Higashi et al.,（1965）の三点曲げにおける変位速度が変形後期に一定になるのは，これとおな
4.4 変形後の転位の全密度

図4で示した平均速度が飽和してくる現象は同じ変形の繰り返しを考えるのが妥当である。この状態での転位の全密度について考察しておく。

-20°Cの転位速度をFukuda et al. (1987)の式から$2.9 \times 10^{-12} \text{mPa}^{-1}\text{s}^{-1}$とし、荷重1 kgfからの平均せん断応力$1.7 \times 10^7 \text{Pa}$とすると、この状況での他の影響のない転位の速度は$4.9 \times 10^{-7} \text{ms}^{-1}$となる。平均変位速度を仮に$6.9 \times 10^{-7} \text{ms}^{-1}$（2.5 mmh$^{-1}$）とし、これから、公称ひずみ速度を$2.0 \times 10^{-5} \text{s}^{-1}$をえて、先の転位速度を用いると可動転位の密度はOrowanの式により$9.0 \times 10^{10} \text{m}^{-2}$となる。実際には正負の転位がすれ違うときの相互作用により（Fukuda and Shoji, 1981）転位の速度は低くなるので、転位密度はこれよりは高くなると考えられる。最大変位（5 mm）のときの扇形部の曲がりを形成する刃状転位換算数は2.7 10^{6} 本である。これを扇形部の面積から平均密度を求めると$5.8 \times 10^{11} \text{m}^{-2}$となる。扇形部は小傾角境界の集合体とするとき対応符号の転位が多数共存していることは考えにくい。

直線部では正負の転位が等量あるので、曲がりが現れないが、この部分の転位の密度を推定する。本実験の初期曲線の延長から、変位曲線が直線化するところの変位速度は、繰り返し変形の変位速度と同程度となる。変位速度一定まで変形した3点曲げ試験片の焼錆では、再結晶の発生と成長は扇形部には定着されている（福田ら, 1977）。これらのことから、直線部の転位密度は先の$9.0 \times 10^{10} \text{m}^{-2}$と$5.8 \times 10^{11} \text{m}^{-2}$の間の値と結論される。

5. 結 論

曲げによる繰り返し変形では加工硬化が起こらない。また、転位密度も低い。これは転位の絡み合いが起こらないことを意味している。絡み合いの可能性のある転位は、この試験片の場合y軸方向へのcのパーガース・ベクトル成分をもつ転位である。cのパーガース・ベクトルの発生は底面内での刃状転位ループの発生が知られている（束ら, 1985）。しかし、cのパーガース・ベクトルのらせん転位は、力学的には発生しないことを意
Alternating Bending of Ice Single Crystal

Akeharu FUKUDA¹), Yasue YONEKAWA²) and Hironori HASEGAWA³)

¹) Department of Materials Science and Engineering, Muroran Institute of Technology,
27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585
2) Meisei Engineering Co., 3-11-2 Nakazima-cho, Muroran, Hokkaido 050-0074
3) TDC Soft Engineering Co., 5-33-6 Sendagaya, Shibuya-ku, Tokyo 151-0051

Abstract: A load of the cantilever type was applied to a test piece cut from a single crystal of ice. When the test piece bent, the load applied to the test piece was reversed. This cycle was repeated. Work hardening did not occur though this cycle was repeated many times. This is explained as follows. Dislocation with the Burger’s vector of the a-axis was responsible for the deformation of the test piece. Dislocation with the Burger’s vector of the c-axis did not occur. Therefore, the dislocations are not tangled, and work hardening does not occur.