化学物質管理戦略研究会論文

ダム湖における農薬モニタリングの問題点

永瀬 修*・井上 聖信**・海老瀬 潜一***・浮田 正夫****

要

ダム湖における農薬モニタリングの問題点を検討するためにRダム湖流域で行った農薬調査の結果を解析した。水田に施用された農薬の河川流出特性およびダム湖内挙動を解析した結果、以下のことが明らかになった。農薬の水環境への流出濃度・負荷量は、散布後の経過日数、散布後の降雨のタイミングとその大きさ、農薬の水溶解度等に左右されて いることが流出特性として明らかになった。さらに、水田から入り期におけるRダム湖では、温度躍層を形成しており、農薬を含んだ流入河川水はダム湖に流入すると、この時期の表層厚層（水温層）である中層に流入する。すなわち、中層を水平方向に流下運動する中層濃度を形成する。したがって、ダム湖内での農薬濃度の鉛直分布は、中層の濃 度ピークを持つパターンであった。ここに、湖沼、ダム湖における農薬のモニタリングの問題点が提起される。すなわち、湖心あるいはダム湖部の表層水のモニタリングだけでは農薬濃度が過大評価になる危険性がある。このように、成層を形成するダム湖に流入する農薬は中層に高濃度で存在するため、湖沼あるいはダム湖での農薬モニタリングは、時間的・空間的な調査が重要である。

キーワード：微量化学物質、密度流、鉛直濃度分布、常時監視、環境基準

1. はじめに

一般にダム湖の水質観測は、ダムサイトにおける表層・中層・底層であることが多く、水深および流下方向に通じての詳細な定期観測データが蓄積されている場合を含む。また、その平均値や代表値の算定方法も測定機関によって測定頻度、測定点が異なるため、統一されていない。

自治体におけるダム湖を含めた湖沼における農薬調査も、公共用水域の常時監視と行われることが多く、採取地点もダムサイトの表層あるいは湖心表層のみで行われることが多い。また、測定回数も予算等の関係から年間1〜2回という例が大部分である。したがって、湖沼における農薬の鉛直分布を含む詳細な研究例も極めて少ない。

福岡県における平成13年度の水質測定計画によればダム湖（4ヶ所）の農薬調査は年1回、ダムサイトの表層のみになっている。一方、環境基本法における水質の環境基準では農薬の基準値は年平均値となっており、福岡県の場合、年1回の調査結果が平均値として報告されている。しかし、農薬は適用対象、対象作物が農薬取締法によって規定されているため、当然流域内での散布時期、散布量にかたよ りがある。したがって、年間を通じての環境中の濃度はかなり変動幅が大きい。

ここでは、公共用水域の常時監視における農薬モニタリングの問題点を明らかにするため、水田内での濃度分布、河川への流出特性、ダム湖における濃度分布を調査した結果について報告する。

2. 方法

2.1 調査地点

調査対象としたRダム湖は、1956年に洪水調節、工業用水、上水道用水確保を目的として完成し、福岡県新築郡福岡町である。福岡市に位置する河川系の支川に位置する重力式コンクリートダム（高さ49.5m、堤頂長100.5m）である。その集水面積は34km²、たん水面積0.79km²、総貯水量1,320万m³、有効貯水量1,250万m³、最大水深60m、平均水深16.7m、平均流入量1.47m³/sec(1965〜1995年)
滞留時間約90日であり、集水域は図1に、集水域の土地利用形態は表1に示すとおりである。全集水面積に対する耕地面積比率は1.79％、水田面積比率は1.64％であり、耕地の92％は水田で占められている。近年の稲作の作付面積から計算した国土に対する水田面積比率は約5.5％であることから、本流域の比率は、わが国の平均的な数値より低い。なお、流入河川の流域であるY川はダム湖内流入まで流程約9.5km、高低差160m、C流域のH川は流程3.75km、高低差315m、D流域のK川は流程2.5km、高低差210mの河川である。また、各流域とも水田の位置は、河川沿いの両側に分布しており、水田から河川への農薬流出が容易な形態をしている。

2.2 対象農薬
ここでの対象農薬は水田で散布される除草剤メフェナセットともち病用殺菌剤ピロキシンであり、その物性値を表2に示す。メフェナセットおよびピロキシンは水質環境基準および水質要監視項目の対象農薬ではない。ただし、メフェナセットは公共用水域における農薬の水質評価指針（平成6年4月15日環境省86環境庁水質保全局長通知）に含まれており、その指針値は0.009mg/Lである。ピロキシンには基準値や指針値が規定されていないが、メフェナセットと共にわが国における使用量が多い。メフェナセットは、本ダム湖流域において5～6月に

図1 Rダム湖および試験水田の位置ならびにRダム湖流域図および調査地点

<table>
<thead>
<tr>
<th>流域</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>流域面積（Km²）</td>
<td>5.62</td>
<td>5.93</td>
<td>4.44</td>
<td>7.01</td>
<td>11.1</td>
<td>34.1</td>
</tr>
<tr>
<td>水田面積（Km²）</td>
<td>0.00</td>
<td>0.09</td>
<td>0.12</td>
<td>0.03</td>
<td>0.32</td>
<td>0.56</td>
</tr>
<tr>
<td>畑面積（Km²）</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>果樹園面積（Km²）</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>森林面積（Km²）</td>
<td>5.15</td>
<td>5.45</td>
<td>4.12</td>
<td>6.91</td>
<td>9.27</td>
<td>30.9</td>
</tr>
<tr>
<td>その他面積（Km²）</td>
<td>0.47</td>
<td>0.38</td>
<td>0.19</td>
<td>0.06</td>
<td>1.45</td>
<td>2.55</td>
</tr>
<tr>
<td>耕地面積比率（％）</td>
<td>0.00</td>
<td>1.69</td>
<td>2.93</td>
<td>0.57</td>
<td>3.06</td>
<td>1.79</td>
</tr>
<tr>
<td>水田面積比率（％）</td>
<td>0.00</td>
<td>1.52</td>
<td>2.70</td>
<td>0.43</td>
<td>2.88</td>
<td>1.64</td>
</tr>
<tr>
<td>森林面積比率（％）</td>
<td>91.6</td>
<td>91.9</td>
<td>92.8</td>
<td>98.6</td>
<td>83.5</td>
<td>90.6</td>
</tr>
</tbody>
</table>
表 2 メフェナセットとピロキロンの物性値

<table>
<thead>
<tr>
<th>物 性</th>
<th>メフェナセット</th>
<th>ピロキロン</th>
</tr>
</thead>
<tbody>
<tr>
<td>水溶度 (mg/L)</td>
<td>4</td>
<td>4000</td>
</tr>
<tr>
<td>オクタンノール・水分配係数</td>
<td>3.23</td>
<td>1.57</td>
</tr>
<tr>
<td>蒸気圧 (mPa)</td>
<td>6.40×10^6</td>
<td>0.16</td>
</tr>
<tr>
<td>ヘンリー則定数 (Pa・m^3/mol)</td>
<td>4.77×10^-6</td>
<td>6.90×10^-6</td>
</tr>
<tr>
<td>土壌有機炭素吸着定数 (Koc)</td>
<td>3063</td>
<td>53</td>
</tr>
<tr>
<td>水中半減期</td>
<td>4～5日</td>
<td>No data</td>
</tr>
<tr>
<td>土壌中半減期</td>
<td>約2週間</td>
<td>No data</td>
</tr>
</tbody>
</table>

ただし、生分解性については著者からの研究でメフェナセットは7日間で50％、ピロキロンは7日間で分解は認められなかった。

一発除草剤として散布（移植後4日から2週間以内）され、ピロキロンは7～8月に散布（本田では3回以内）されている。

2.3 調査方法

図1にダム湖への流入河川およびダム湖水の採取地点を示す。河川水は流し部で採取し、ダム湖水は採水器で直直方向に数点の試料を採取した。試料は褐色ガラス瓶に採取し、冷蔵して処理した。なお、試料採取の際、気温、水温、溶存酸素および河川流量を測定した。

2.4 農薬の分析

既報で示したように、懸濁態の農薬は降雨時流出等濃度濃度の高い場合検出されるが、通常は濃度が低く、検出限界に近い農薬が多いため、ここでは溶存態の農薬についてのみ分析を行った。

試料はあらかじめアセトンで洗浄したGF/Cガラス繊維ろ紙（Whatman社）でろ過した。

溶存態の農薬は、このろ液1Lをジクロメタン、メタノールおよび純水でコンディショニングした固相抽出カラトッジ（Sep-Pak Plus PS-2）をSep-Pak Concentratorにセットし、流速20mL/minで加圧濃縮した。濃縮後、固相抽出カラトッジに固相抽出出Sep-Pak Dry（Waters社）を連結し、ジクロメタン7mLで溶出した。ジクロメタン溶液に窒素ガスを吹き付けてジクロメタンを気散させ、アセトン1mLを正確に加え、分析試料とした。

農薬の分析は、ガスクロマトグラフ質量分析計（島津QP-5000）を用いて行った。分析条件は表3に示す通りである。この分析法での各農薬の回収率は75％以上であった。

3. 結果と考察

3.1 ダム湖流入水の農薬濃度変化

対象とした農薬は水田に散布される。そこで水田に散布された農薬の田面水中的経日変化を調べた。図2は福岡県筑紫野市の試験水田（図1）における田面水の農薬濃度変化を1996年7月から8月にかけて調査した結果である。一般に田面水中農薬濃度は、散布後、約1日で最大濃度に達し、その後、

表 3 GC/MS分析条件

<table>
<thead>
<tr>
<th>装置（GC/MS）</th>
<th>GC – 17A (GC), QP – 5000 (MS) : Shimazu</th>
</tr>
</thead>
<tbody>
<tr>
<td>カラム</td>
<td>DB – 1 (30m x 0.25mmФ, 0.25μm)</td>
</tr>
<tr>
<td>カラム温度（℃）</td>
<td>50℃ (2 min) – (20℃ /min) – 100℃ – (10℃ /min) – 270℃ (8.5 min)</td>
</tr>
<tr>
<td>注入口温度（℃）</td>
<td>260℃</td>
</tr>
<tr>
<td>インターフェース温度（℃）</td>
<td>280℃</td>
</tr>
<tr>
<td>イオン圧</td>
<td>70 eV</td>
</tr>
<tr>
<td>注入方法</td>
<td>スプリットレス、1μm</td>
</tr>
</tbody>
</table>

図2 試験水田におけるメフェナセットとピロキロンの田面水中濃度経日変化

◎印は農薬散布日
一次反応速度式で近似できる濃度減少を示す。当然、減少速度定数は各々の農薬によって異なるが、濃度変動のパターンは同じである。

水田から流出する農薬の大部分は田面水から供給される。したがって、流出先の河川でも同じような濃度の経日変動パターンを示す。ただし、農薬の河川への流出は単一の田面からでなく、水田群からの流出となるため農薬散布時期を反映した濃度変動パターンとなる。図3(a)と図3(b)は1995年5月から6月にかけての調査時のSt.1およびSt.4におけるメフェナセット濃度の経日変化であり、図3(c)はこの時期のSt.1における流域の降水量ならびに流量の日変化を示したものである。メフェナセットについては、St.1で5月に2回の濃度ピークと、6月に横渡かピークが現れた後、St.4では5月に数回のピークが認められる。これらのピークのうち、特に5月はじめのピークは降雨時流出でないことは、図3(c)との対比から明らかである。

本ダム湖流域では、水稲栽培時期がそれぞれの流域で異なっており、St.4の上流であるE流域では5月初旬から5月中旬の恵年に集中（労務力確保のため）しており、St.4より下流のB、C、D流域では主に6月初旬に行われている。図3(a)、3(b)の濃度ピークは、各流域における水稲栽培後の除草剤散布時期を反映している。

図より明らかなように、メフェナセットは散布直後に流出先河川で高濃度を示し、その後、漸減減少している。また、散布直後の降雨時に大きなピークを示すことが明らかになっている。一方、ビオキロンの流出特性は図示していないがメフェナセット
3.2 ダム湖内での農薬の濃度分布

農薬のダム湖内での濃度分布を検討するとき、ダム湖の水理流動特性を考慮することはきわめて重要なことである。

ダム湖の水文学的特徴を示すパラメータとして、安芸・白砂は年間総流入（出）量 \(Q_0 \) と総貯水容量 \(V_0 \) との比、すなわち年間平均回転率 \(a = Q_0/V_0 \) を用いて、ダム湖の躍層型を分類し、\(a \) が10以下であれば安定した躍層が形成され、20以上であれば混合型であると分類している。この式に本ダム湖の値（昭和40年～平成7年までの年間総流入量4,635万m³，総貯水量1,320万m³）を代入すると3.5となり、安定躍層型に分類される。実際に、本ダム湖では水田かんがい期において強固な温度躍層が形形成しており、上記の計算結果と一致している。ダム湖に温度躍層が形成されると農薬を含む流入河川水は自身の水温（密度）とダム湖内の水温分布（密度分布）に従ってダム湖に流入することができる予想される。

図4には1995年5月から8月にかけてのダム湖表層（ダムサイト）と流入河川水の水温の経日変化を示し、図5（a）、（b）には、この期間内のダム湖内におけるメフェナセットとピロキロンの濃度鉛直分布およびその時の水温鉛直分布を示す。

図4に示すように、5～8月は降雨後を除けば、流入水温がダム湖表層水温より数度低い。図5（a）および5月24日のメフェナセットの最大濃度は中層付近にあり、その時の水温はダム湖の水温鉛直分布から15℃前後である。これは図4から流入河川の水温と一致することがわかる。また、図5（b）のピロキロンの濃度鉛直分布から最大濃度は水深4m付近にあり、その時の水温は25℃前後で5月のメフェナセットと同様に流入河川水温に一致している。予想どおり、農薬は河川水が流入する中層あるいは亜表層において最もその濃度が高かった。

つぎにダム湖内の流入方向での濃度分布をみると、温度躍層は、図6に示すようにダム湖の流入端から堰堤部までの全延長にわたって、ほぼ水平であり、また農薬のピーク濃度位置も変わらない。しかし、水中での農薬濃度は堰堤部に移動するほど低下している。湖水中の密度躍層面に到達した河川水の一部は中層密度流を形成しながらダムサイトへ向かって移動するが、その間に一部は滞在し形成する下層密度流による拡散現象により濃度減衰を起こし、ダム湖堰堤に到着することを示していると考えられる。

このように、現場調査の結果より農薬を含む流入河川水のダム湖内での流下経路を規定するのは主に密度流と取水口位置であり、湖水中の農薬等化学物質は低濃度であるため、密度層と湖水の流れに支配された挙動となることが考えられる。

3.3 ダム湖における農薬モニタリングの問題点と望まれるモニタリング手法

ダム湖に流入する農薬は、時間的に変動があること、湖内では濃度で鉛直分布が生じ空間的にかたよりがあることが、ダム湖における農薬のモニタリングの難しさを示している。すなわち、便宜的に（容易に）年一回表層の農薬濃度をダム湖の代表値にす
図5 St.7aにおけるメフェナセットおよびピロキロンの濃度鉛直分布および水温鉛直分布
(a)メフェナセット(1995年5月24日)、(b)ピロキロン（1995年7月24日）

図6 1995年5月17日のSt.7a, St.7b, St.7cにおけるメフェナセットの濃度鉛直分布および水温の鉛直分布

これは非常に危険であることが示唆された。したがって、サンプリング現場では、水温の鉛直分布を密に測定し、流入河川水温に近い層の湖水は確実に採取するためにすることが重要である。また、対象流域における農薬散布時期の情報もサンプリング時期を決める重要なファクターである。

これらの結果から、ダム湖における農薬モニタリングは、流域内での農薬使用状況、ダム湖内での農薬の分布を確かめて調査計画をたてるべきであると
考える。

4. おわりに

水域中の農薬濃度の詳細な情報を得るためには環境中の農薬の動態を知った上でのモニタリングが必要と考えられる。そして、それらのデータの蓄積を農薬のリスク評価へつなげるべきである。そのためには、科学的根拠に立ったモニタリング計画が導入されることが期待される。

謝辞：福岡県保健環境研究所（現在福岡県環境部環境政策課）田中義人氏にはGC/MS分析に際し、御協力いただいた。ここに記して深謝します。

文献
3) 永瀬 修・浮田正夫・海老瀬清一・井上隆信（1998）ダム貯水池に流入した水田散布農薬の濃度鉛直分布からの定量評価. 土木学会論文集，No. 587/VII-6, 97-107.
4) 沼辺明博・井上隆信・海老瀬清一（1992）田園地河川における水稲移植後の農薬流出量の評価. 水環境学会誌，15，662-671.
6) 永瀬 修・井上隆信・海老瀬清一・浮田正夫（1997）ダム湖集水域における水田からの殺虫剤の流出特性. 土木学会論文集，No.566/VII-3，49-60.
8) 永瀬 修・海老瀬清一・浮田正夫・井上隆信（2001）除草剤ダムロンの水田からの流出特性. 水環境学会誌，24，325-330.
9) 安芸健一・白砂孝夫（1974）貯水池廃水現象の調査と解析（その1）電力中央研究所報告74505.
10) 村田敦子・永瀬 修（1989）カムダム湖の富栄養化（I）-植物プランクトンの季節消長-．全国公害研究会誌, 14，12-16.
11) 永瀬 修・秋尾敦子・松尾 玄・中村又司・永瀬義孝（1991）カムダム湖の水質. 福岡県衛生公害センターや報, 18，57-62.
The Point at Issue of Monitoring for Pesticides in the Reservoirs

Osamu NAGAFUCHI*, Takanobu INOUE**, Senichi EBISE*** and Masao UKITA****

(*Fukuoka Institute of Heath and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan,
Gifu University, *Setsunan University, ****Yamaguchi University)

Abstract

Based on vertical distribution of the pesticides in a reservoir, a correct monitoring method of pesticide residues originated from paddy field application were investigated in this study. The spatial distribution of pesticides in thermally stratified water clearly shows that concentrations of the pesticide residues were same levels as in the inlet part of the reservoir.

Therefore, the dominant residues of pesticides were present in the middle water layer.

The results of the study indicate that spatial monitoring as well as periodical monitoring is essential for the accurate evaluation of the pesticide residues in the lake and reservoir water.

Key Words: micro chemical pollutants, density current, vertical distribution of pesticides, routine observation, environmental quality standards