電気スズ及びはんだめっきの
添加剤と廃水処理

Toshio MIZOGUCHI*

電気スズ及びはんだめっき法における最新技術による浴組成、作業条件、物理化学的特性等について述べ、特にスズに比較して、はんだめっきの優位性を強調し、あわせて廃水処理法についても言及した。

1. 緒言

スズめっきの歴史は古く、溶融したスズ中に銅器を浸せきしてめっきする技術は、ローマ時代にはじまっていたようである。スズめっきは長期間光沢を保ち、耐食性に優れ、有機酸にも安定な特長があるので、従来から食器類や製造材に使用されてきた。近年では、スズの特性であるはんだ付け性が優れていること、接触抵抗が小さい点から、電子部品工業界において、高価な金めっきや銀めっきに代って大量に使用されるようになってきた。

スズめっき用の添加剤としては、従来、タンパク質系の例えば、ゼラチン、ヘプトン、グルー、あるいは甘草などが用いられてきた。これらの添加剤は、溶解しにくく、ロット間の品質のばらつきが大きい、めっき浴中の安定性が悪く、樹枝状めっきになりやすい、陰極電流密度を高くできない、あるいは、光沢めっきが得られない、等々の欠点があったが、合成の添加剤が開発され、これらの欠点が解消された。

しかしながら、スズめっきの欠点としてホイスカーの発生があり、特に小型化した電子部品及びこれらの組立て後に、ホイスカーの発生が原因で短絡によって微小電流が流れ、電子機器又は電子装置が故障する場合がある。この対策として、スズの一部を鉛におきかえ、スズ・鉛合金、すなわち、はんだ合金めっきが使用されるようになってきた。

はんだめっきの特性は、スズめっきのそれと同等ないしそれ以上で、特にホイスカーの発生防止、はんだ付け温度の調整などが、スズと鉛の合金比率を変えることによって充分に可能になってきた。これには、はんだめっき専用の合成系光沢剤、添加剤の開発が大いに寄与し、エレクトロニクス産業の発展には、はんだめっきが欠かせないものとなってきた。

2. 電気スズめっき法

電気スズめっき性浴は、分類すれば、酸性浴、中性浴、アルカリ性浴となる。酸性浴は、硫酸浴とホウフッ化浴に分けられ、それぞれ光沢浴と無光沢浴に分類される。最近では中性浴も開発され、中性の特長が特殊用途に発揮されているが、浴のメンテナンス、コストに問題がある。アルカリ浴は、スタネート浴とビロリン酸浴に分けられ、スタネート浴はカリウム浴とナトリウム浴がある。アルカリ浴の場合にはめっき仕上げはツヤ消し、すなわち無光沢となる。以上の様々な種類のうち最も多用されているのが硫酸浴で、浴組成、作業条
表1 電気スズめっき用硫酸酸性標準めっき

<table>
<thead>
<tr>
<th>浴成</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>硫酸第一スズ</td>
<td>30 g/l</td>
<td></td>
</tr>
<tr>
<td>濃 溶</td>
<td>105 ml/l</td>
<td></td>
</tr>
<tr>
<td>光沢 液</td>
<td>適正量</td>
<td></td>
</tr>
</tbody>
</table>

作業条件

陰極電流密度	0.02～3.0 A/dm²
陽極電流密度	1.5 A/dm² 以下
かくはん(カソード・ロッカー)	0.3～1.3 m/min
浴温 度	16～27℃

3. 電気はんだめっき法

電気はんだめっき浴の種類としては、ホウフッ化浴、フェノールスルホン酸浴、アルカノールスルホン酸浴、ビロリン酸浴、スルファミン酸浴があるが、品質性能からみて、現在、総合的な評価ではホウフッ化浴が最も優れているといわれている。

はんだめっき、すなわちスズと鉛の合金めっきには各種の合金組成があり、スズ90％鉛10％のいわゆる9/1はなんだ、スズ80％鉛20％の8/2はなんだ、…スズ10％鉛90％の1/9はなんだ等がある。特に電子部品のうちではんだ付けが必要とされる部品には、スズ/鉛＝9/1～6/4のはんだめっきが多用されている。特に、ホイスカー防止策としては、スズ/鉛＝6/4が完全な効果をあげる。

また、はんだ付けに関係の深い溶点についても、スズ100％のめっきの場合232℃に高いため、スズ/鉛＝9/1で213℃、8/2で204℃、7/3で192℃、6/4になれば188℃と温度が下がり、
省エネルギー化にもつながる。各種合金組成のはんめっき用に使用されている添加剤「レフレッキントンレッド（RTL）」（住友スリーエム製作）の一覧表を表2に示す。最も一般的に広く使用されているホウフッ化浴（スズ / 鉛＝6 / 4）の浴組成を表3に示す。この浴組成の場合のめっき作業条件を表4に示す。

以下、ホウフッ化浴用光沢剤レフレッキント

<table>
<thead>
<tr>
<th>T/L</th>
<th>添加剤</th>
<th>屋上</th>
<th>用途</th>
<th>陰極電流密度</th>
<th>電着合金組成変化割合</th>
<th>電着速度（最小/最大電流密度）</th>
</tr>
</thead>
<tbody>
<tr>
<td>100/0</td>
<td>RTL アルファ No. 351</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>60～200</td>
<td>32～110</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 100-L L</td>
<td>無光沢</td>
<td>バレル、ラック</td>
<td>2～8</td>
<td>11.4～1.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 100-L L</td>
<td>無光沢</td>
<td>ワイヤー</td>
<td>2～15</td>
<td>11.1～8.0</td>
<td>-</td>
</tr>
<tr>
<td>90/10</td>
<td>RTL アルファ、ガンマ No. 354</td>
<td>光沢</td>
<td>バレル、ラック</td>
<td>1.5～5</td>
<td>0.8～2.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>半光沢</td>
<td>バレル、ラック</td>
<td>0.5～5</td>
<td>0.2～2.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80/20</td>
<td>RTL アルファ、ガンマ No. 327</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>60～200</td>
<td>31～108</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>バレル、ラック</td>
<td>15.5～5</td>
<td>0.2～2.4</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70/30</td>
<td>RTL No. 327</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>40～200</td>
<td>21～106</td>
<td>-</td>
</tr>
<tr>
<td>60/40</td>
<td>RTL アルファ、ガンマ No. 324</td>
<td>光沢</td>
<td>バレル、ラック</td>
<td>3～7</td>
<td>1.7～3.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>半光沢</td>
<td>バレル、ラック</td>
<td>0.5～5</td>
<td>0.3～3.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 327</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>40～200</td>
<td>21～105</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>無光沢</td>
<td>ラック、ストリップ</td>
<td>25～30</td>
<td>1.5～18</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50/50</td>
<td>RTL アルファ、ガンマ No. 327</td>
<td>光沢</td>
<td>バレル、ラック</td>
<td>3～7</td>
<td>1.6～3.8</td>
<td>-</td>
</tr>
<tr>
<td>40/60</td>
<td>RTL No. 334</td>
<td>半光沢</td>
<td>バレル、ラック</td>
<td>0.5～5</td>
<td>0.3～2.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 327</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>40～200</td>
<td>21～104</td>
<td>-</td>
</tr>
<tr>
<td>30/70</td>
<td>RTL No. 327</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>1.0（平均）</td>
<td>0.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 327</td>
<td>半光沢</td>
<td>ラック、ストリップ</td>
<td>40～200</td>
<td>21～103</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 327</td>
<td>光沢</td>
<td>ワイヤー</td>
<td>3～15</td>
<td>2.6～8.0</td>
<td>-</td>
</tr>
<tr>
<td>20/80</td>
<td>RTL No. 335</td>
<td>無光沢</td>
<td>バレル、ラック</td>
<td>0.5～5</td>
<td>0.3～3.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 327</td>
<td>半光沢</td>
<td>ワイヤー</td>
<td>40～200</td>
<td>21～103</td>
<td>-</td>
</tr>
<tr>
<td>10/90</td>
<td>RTL No. 326</td>
<td>無光沢</td>
<td>バレル、ラック</td>
<td>0.4～5</td>
<td>0.2～2.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>No. 327</td>
<td>半光沢</td>
<td>ワイヤー</td>
<td>40～200</td>
<td>20～102</td>
<td>-</td>
</tr>
<tr>
<td>0/100</td>
<td>RTL No. 326</td>
<td>無光沢</td>
<td>バレル、ラック</td>
<td>0.5～5</td>
<td>-</td>
<td>0.31～3.1</td>
</tr>
</tbody>
</table>

表3 電気はんだめっき用ホウフッ化
標準はんだめっき浴組成

<table>
<thead>
<tr>
<th>溶 釈</th>
<th>作 業 件</th>
</tr>
</thead>
<tbody>
<tr>
<td>ホウフッ化第一スズ（45％）</td>
<td>0.5～7 A/ dm²</td>
</tr>
<tr>
<td>ホウフッ化鉛（50％）</td>
<td>2 A/ dm² 以下</td>
</tr>
<tr>
<td>ホウフッ化水素酸（42％）</td>
<td>65 m/ l（102 g/ l）</td>
</tr>
<tr>
<td>ホウ酸</td>
<td>25.2 m/ l（325 g/ l）</td>
</tr>
<tr>
<td>ホルマリン（37％）</td>
<td>34 g/l</td>
</tr>
<tr>
<td>添加剤 RTL アルファ</td>
<td>30 m/ l</td>
</tr>
<tr>
<td>添加剤 RTL ガンマ</td>
<td>35 m/ l</td>
</tr>
<tr>
<td>添加剤 RTL アルファ</td>
<td>5 m/ l</td>
</tr>
</tbody>
</table>

表4 電気はんだめっき用ホウフッ化
標準はんだめっき浴の作業条件
レッド（RTL）を使用した場合の各種技術データについて述べる。

電着速度は、前述のRTL標準浴組成（表3）で、ハルセル・テスターを使用して液温20℃、全電流3A、時間2.5～10分間めっきし、めっき厚さ、コクール電子管式膜厚計により測定した。1～5A/dm²における電着速度を図2に示す。また、RTL標準浴組成で、陰極電流密度を1.5～7.5A/dm²に変えた場合はだんだん電着物組成の変化の割合を図3に示す。但し、図3の図表はだんだん電着物中のスズ分の％を示す。

耐食性については、5％の塩水噴霧試験によると、従来のペプトン浴によるつや消し仕上げはんめっきでは、めっき厚12.5μmの場合、20時間以下、25μmの場合、30～40時間。ペプトン浴によるつや消し仕上げはんだめっき後、リフローした場合で、めっき厚12.5μmの場合、40～60時間。しかしながら、レフレッティンレッド（RTL）による光沢はんだめっきで、めっき厚12.5μmの場合、120時間以上でも銅発生は見られず、耐食性に優れていることを示した。

また、98％湿度試験によると、従来のペプトン浴の場合、60時間以下。ペプトン浴でつや消しはんだめっきした後、加熱してリフローしたものについては、75時間以下。RTLの場合には、175時間以上でも異常を示さず、耐湿性に優れていることを立証した。また、めっき液のCODは過マンガン酸カリ法による測定では、35,000ppmを示した。

4. 廃水処理法

フッ素含有廃水の高度な処理法については、各種の処理法があるが、それぞれ長所短所がある。高度な処理法としては、逆浸透膜法、電気透析膜法、イオン交換法、選択イオン交換法、電解除去法、多価金属凝集法、石灰軟化法（水酸化マグネシウム吸着処理法）、活性炭及び骨炭吸着法、リン酸カルシウム法、活性炭アルミナ法等がある。廃水処理規制の厳しい地域では、逆浸透膜法により工場外に廃水を全く出さないクローズシステムを採用している。

逆浸透膜法の利点は、1）イオン、低分子、コロイド、微粒物等、超精密領域での分離が可能である。2）相変位や化学変化を伴わず、また、常温で処理するため熱変化もないので、変質しやすい物質の濃縮分離が可能である。3）操作に必要なエネルギーはポンプ駆動用程度で、電気透析に必要とされるような高電圧は不要である。4）イオン交換法の樹脂再生または薬剤処理法に必要とされるような高価もしくは高腐食性の化学薬品は不要である。5）システムの自動化が容易で、運転操作が簡単である。また、可動部分はポンプのみであるため、
メンテナンスが容易であり、最小限ですむ。⑥装置がコンパクトであるため、大きな設置面積を必要としない、等がある。

この方法は、公害対策としては完全であるが、設備投資額が大きくなる欠点がある。廃棄処理が比較的簡単な多価金属凝集法のフローシートを図4に示す。

5. 結言

エレクトロニクス工業に関連の深い表面処理技術として、電気スズめっき、並びに、電気はんだめっきの現状について述べたが、めっき用添加剤が、めっき特性に与える影響は非常に大きい。従って、添加剤の改良、開発によってめっき特性を現状以上に高度なレベルに上げることが必要と思われる。

電子部品の小型化にともなって、スズめっきのホイスカー発生防止対策から、スズめっきの一部がはんだめっきに代していく傾向が、今後更に一層顕著になることが予想される。ホウフッ化浴によるはんだめっきは、その性能、使用法、コスト等総合評価では、現在もっとも優れたものではないが、公害対策を必要とする欠点をもっている。従って、現在の品質特性を落すことなく、ホウフッ化物を使用しないタイプの、いわゆる低公害型電気はんだめっき用添加剤、並びにめっき浴の開発が将来の課題である。

参考文献
1）めっき技術便覧編集委員会編；“めっき技術便覧”，すずめっき，p.256，日刊工業新聞社（1971）
2）さびを防ぐ事典編集委員会編；“さびを防ぐ事典”，すずめっき，p.489，産業調査会（1981）
3）小林良治；スズめっき，“電気めっき技術ガイドブック”，p.237，東京銅箔材料協同組合（1975）
4）石原祥江；スズ鉛合金めっき，“電気めっき技術ガイドブック”，p.294，東京銅箔材料協同組合（1975）
5）千葉邦雄；表面処理薬品，“電子技術”，23 (14), p.72，日刊工業新聞社（1982）
6）Osmo® Catalogue；Osmonics Inc., U.S.A.