透明導電膜概論

高井 治

Introduction to Transparent Conducting Films

Osamu TAKAI*

Key Words: Transparent Conducting Film, ITO (Indium Tin Oxide), Film Preparation

透明導電膜は、可視域で透明であり、かつ導電性がある薄膜である。現在ITOを中心に材料開発は進めており、応用は液晶ディスプレイ、太陽電池をはじめ広範囲となっている。透明導電膜につき、応用、種類、性質、作製法、課題など概説した。

1. はじめに

透明導電膜は、(1) 可視域（およそ380〜780nmの波長領域）での光透過度が大きく透明で、かつ(2) 電気伝導度の大きな薄膜である。具体的には、透過率が約80%以上で、抵抗率（比抵抗）が約1×10⁻⁸Ω·cm（1Ω·cm=10⁻¹²Ω·m）以下の薄膜が透明導電膜といえよう。

一般に、透明であることは、エネルギーガップが大きく（約3eV以上）、伝導電子が少ないことを意味する。一方、電気伝導度の大きな材料は、通常伝導電子が多く（約1×10⁹cm⁻³以上）、金属的な振舞いをし、透明ではなくなる。この一見矛盾するような2つの条件を同時に満足する材料が、透明導電膜に用いられている。この材料としては、初期には、ネサ膜によばれたSnO₂膜を、最近ではSnをドープしたIn₂O₃（ITO, indium tin oxide）膜を中心に開発が進められている。

透明導電膜は、現在、液晶ディスプレイ（LCD）、太陽電池をはじめ、多くの分野で用いられている。私達の身の回りの製品に、それこそ目には見えないが多くの使われている。この使用量は、急速に増大しており、また求められる性能はより高度になっている。特に、ワープロ、パソコンなどのOA機器用ディスプレイでは、従来のCRTからLCDへと転換が急速に進んでいる。さらにフルカラーのパソコン用LCDも商品化された。このことはこの転換をより早く進めるであろう。またカラーLCDをはじめLCD開発では、今後高画質化、大画面化がさらに進展するであろう。この場合、LCD用の透明導電膜の需要はますます増大し、また透明導電膜に対する性能要求も一層高まっていく。

本稿では、近年発展が著しいこの透明導電膜につき、応用、種類、性質、作製法、今後の課題などを述べる。

2. 透明導電膜の応用

透明導電膜は、表1に示すように、大別して電気的応用と光学的応用の2分野で用いられている。目的によって異なるが、基板にはガラスが最も多く使用されており、プラチックフィルムなども使用される。今後、軽量化のためには、ガラスにかわり、プラスチックが多く用いられよう。

電気的応用では、透明電極として最も多く使わ
表1 透明導電膜の応用1)

<table>
<thead>
<tr>
<th>電気的応用</th>
<th>面発熱</th>
<th>帯電防止、静電・電磁波遮へい</th>
</tr>
</thead>
<tbody>
<tr>
<td>ディスプレイ</td>
<td>防暑消防用ヒーター</td>
<td></td>
</tr>
<tr>
<td>液晶、エレクトロミネットセント、エレクトロニック、ブラズマ</td>
<td>自動車、電車、航空機,</td>
<td></td>
</tr>
<tr>
<td>調光デバイス</td>
<td>シューケース、カメラ</td>
<td></td>
</tr>
<tr>
<td>液晶、エレクトロニック</td>
<td>レンズ、スキーサングラス</td>
<td></td>
</tr>
<tr>
<td>太陽電池</td>
<td>暖房用パネルヒーター</td>
<td></td>
</tr>
<tr>
<td>半導体シリコン、アモルファスシリコン</td>
<td>調理用加熱板</td>
<td></td>
</tr>
</tbody>
</table>

光学的応用

<table>
<thead>
<tr>
<th>無線遮へい、省エネルギー</th>
<th>選択透過</th>
</tr>
</thead>
<tbody>
<tr>
<td>建物窓</td>
<td>太陽集熱器</td>
</tr>
<tr>
<td>炉、オープンのぞき窓</td>
<td>平板形カバーガラス</td>
</tr>
<tr>
<td>照明灯前部</td>
<td>集光形反射</td>
</tr>
<tr>
<td>低圧ナトリウムランプ</td>
<td>白熱ランプ</td>
</tr>
</tbody>
</table>

ており、現在、液晶ディスプレイ（LCD）、エレクトロミネットセントディスプレイ（ELD）、エレクトロニックディスプレイ（ECD）などのフラットパネルディスプレイ、太陽電池、液晶あるいはエレクトロニック（EC）調光デバイスなどをはじめ、幅広い分野で用いられている。透明導電膜についての要求は、各種デバイスにより異なっている。

LCDにおいては、その高品位化、カラーハイ、大画面化に伴い、透明導電膜の低抵抗化および微細加工化、成膜温度の低減化、大面積成膜が進行している。現在、LCD用には、シート抵抗（面積抵抗；正方形の薄膜の一辺に平行な方向の抵抗）で10Ω/□以下の低抵抗の膜から200～800Ω/□の高抵抗の膜まで用途に応じて作製されている。

膜の抵抗率ρ（Ω·cm）、シート抵抗R（Ω/□）および膜厚d（nm）の間には

\[ρ = R \times d \times 10^{-7} \]

の関係がある。このため、同じ抵抗率の材料の膜でも、膜厚が大きくなると、そのシート抵抗は減少する。しかし、図1に示すように透過率には、干涉効果から膜厚により極小と極大が存在する。このため、低シート抵抗で85％以上の高透過率を得るためには、抵抗率に応じた最適の膜厚が存在し、透過率の膜厚依存性を考慮することが必要である。

アモルファスシリコン（α-Si：H）太陽電池をはじめ各種太陽電池においては、耐久性が要求されている。

光学的応用については、可視域での高透過特性と同時に、高濃度の伝導電子による赤外域での高反射特性を利用している。透明導電膜のコーティングは太陽エネルギーの有効利用、省エネルギー
表2 透明導電膜材料

<table>
<thead>
<tr>
<th>種類</th>
<th>膜材料</th>
</tr>
</thead>
<tbody>
<tr>
<td>金属薄膜</td>
<td>Au, Ag, Pt, Cu, Rh, Pd, Al, Cr</td>
</tr>
<tr>
<td>酸化物半導体薄膜</td>
<td>In_{2}O_{3}, SnO_{2}, ZnO, CdO, TiO_{2}, CdIn_{2}O_{4}, CdSnO_{2}, ZnSnO_{2}</td>
</tr>
<tr>
<td>導電性窒化物薄膜</td>
<td>TiN, ZrN, HfN</td>
</tr>
<tr>
<td>導電性ホウ化物薄膜</td>
<td>LaBr</td>
</tr>
</tbody>
</table>

などの観点からも重要な技術となっている。

3. 透明導電膜の種類および性質

透明導電膜材料とは、表2に示すように、金属系、酸化物半導体系を主として種々の材料が開発されてきた。

金属は膜厚を20nm以下にすると、吸収率と反射率が低下し、透過率が大きくなる。このため金属薄膜を透明導電膜としても用いることができる。この場合、用いられる膜厚はおよそ3〜15nmである。この薄さのためと透過率を上げるために、一般的には透明誘電体膜は含まれない。下地膜/金属膜/上層膜の3層構造の膜が使用される（例：Bi_{2}O_{3}/Au/Bi_{2}O_{3}, TiO_{2}/Ag/TiO_{2}）。ただし、耐久性はあまり良くない。金属膜と同様に、電気伝導性の窒化膜やホウ化膜も使用できる。この場合も、透過率を上げるためには3層構造で使われること（例：TiO_{2}/TiN/TiO_{2}, ZrO_{2}/ZrN/ZrO_{2}）。

この耐久性は高い。金属膜などの材料は、特殊な用途（例：磁気シールド）以外あまり用いられていない。

一般に使用されているのはITOを中心とする透明酸化物半導体膜である。酸化物半導体膜は高透過率、高耐久性のため広く用いられるようになった。現在、ITO、SnをドープしたSnO_{2}（ATO）、FをドープしたSnO_{2}（FTO）、AlをドープしたZnO（AZO）が使われている。ディスプレイ関係では、ITOがほとんどである。In_{2}O_{3}（1）、（2）は図2に示すC型三二酸化物の結晶構造を示し、In原子には2種類の結晶学的に非等価な位置がある。SnO_{2}（3）は図3に示すルチル構造であり、ZnO（4）は図4に示すセマコン型結晶構造である。
は図4に示す六方晶系のウルツ錐型の結晶構造である。通常、薄膜は多結晶構造で用いられる。

透明導電膜に使用する酸化物半導体は、化学量論組成からのがずによる酸素空孔などの真性欠陥がドナー準位を形成し、n形の導電性を示す。この半導体では、フェルミ準位が導電帯に入り込み、縮退しており、伝導電子密度は10^{18}～10^{19}cm$^{-3}$と大きく、これで、抵抗率が10^{-1}～10^{-3}Ω・cmの高伝導性となる。一方、この半導体のバンドギャップは3eV以上であり、バンド間遷移による吸収は350～450nmの紫外外域で生じる。また伝導電子密度は金属のより3～4桁小さいため、伝導電子による反射、吸収は長波長側にシフトし、1～2μm以上の近赤外域で生じる。こうして、およそ350nm～1μmの可視域において、光透過度は大きくなる。さらに、不純物を適切に添加することにより、伝導電子密度は10^{19}～10^{20}cm$^{-3}$に増加し、抵抗率は10^{-2}～10^{-4}Ω・cmに低下する。このため、酸化物半導体薄膜では、各種元素をドープして、その性質が調節されている。

In$_2$Oの場合のSnドーピングの影響を図5に示す。図5ではSnO$_2$を約5 wt%添加すると、抵抗率は極小になる。現在、SnO$_2$でおよそ5〜10 wt%添加した原料がITO膜の作製に用いられている。酸素空孔やSnなどによる準位は確定していなが、ITOのエネルギーバンドモデルについては、図6のように考えられている。高Snドープでは、ドナーは帯を呈し、伝導帯に食い込み、フェルミ準位が伝導帯に入った縮退状態になっている。このため、図7に示すように、ITO膜の電気特性の温度依存性はほとんど認められない。

ITO膜の光学特性は、Snドープ量により図8のように変化する。紫外外域では、価電子帯にある電子の伝導帯への遷移によって大きな吸収が生じている。可視域では、ほとんど透明である。薄膜の基板との干渉効果により、透過率、反射率は、膜厚によって変化する。キャリア濃度の大きな試料では赤外域での反射率が大きく、約1μm付近より反射率は立ち上がっている。キャリア濃度が小さくなるにつれ、赤外域での反射率は減少し、立ち上がり波長も長波長側に移動している。このことは、金属薄膜と同様にプラズマ振動によって説明される。

Snドーピングの機構については明らかではないが、In$^{3+}$の位置にSn$^{4+}$が入り、Snが電子を1個放出し、ドナー準位を形成するか、またはSnがIn$_2$Oの格子間に入り、ドナー準位を形成する。
と考えられている。多結晶体のため、Sn の結晶粒界への偏析も起きる。この偏析を減らすために、粒界散乱を減少し、移動度を増加させ、抵抗率を低下させることができる。

SnO₂の場合は、Sb, Fなどがドープントとして用いられている。この場合、Sb を単独で用い るより、F を共存する形で使用したほうが、より低抵抗になる。Sb は Sn の位置に、F は O の位置に入り、ドナー準位を形成すると考えられている。

ZnO の場合は、Al, In, Si, Fなどがドープ ントである。反応性イオンプレーティングにより ZnO 膜を成膜した場合、O₂にNF₃を混合して、F をドープしたときの電気特性の測定結果を図 9 に示す1)。反応ガスとしてO₂にNF₃を約1%添加すると、抵抗率は極小となった。

図 8 In₂O₃膜とSnをドープしたIn₂O₃(ITO)膜の分 光透過率と反射率1)
1. In₂O₃：N=1.2×10⁶cm⁻¹,
 μ=50cm⁻¹/Vs, d=340nm
2. 1 wt%SnO₂ドープ：N=2.3×10⁶cm⁻¹,
 μ=55cm⁻¹/Vs, d=340nm
3. 5 wt%SnO₂ドープ：N=8.1×10⁶cm⁻¹,
 μ=37cm⁻¹/Vs, d=300nm
4. 10 wt%SnO₂ドープ：N=6.4×10⁶cm⁻¹,
 μ=15cm⁻¹/Vs, d=390nm

ITOは公害を起こす可能性が少なく、最も高特性の材料であるが、Inの価格や資源的な面で、ま た化学的安定性の点で問題がある。これに対し、SnO₂やZnOについては、現時点では電気の特性 では劣っているが、価格、資源、公害性、化学的安定性では優れた点がある。

4．透明導電膜の作製法

透明導電膜の作製法111) としては、表 3 に示す化学的方法、物理的方法の各種手法が使用されている。作製材料、使用目的により使われる方法は選択される。

化学的方法は、通常大気圧下で可能であり、装 置費用も安く、大面積基板にも高速で成膜できる。しかし、膜厚の均一性に劣り、抵抗率も物理的方法の場合と比べ高い場合が多い。スプレー法では、約400℃にて加熱したガラス基板上で、InCl₃、SnCl₃
などを加水分解させたり、あるいはIn (C₅H₇O₂) を熱分解させて成膜する。塩素法は、高特性の膜はできないが、簡便で安価な方法である。特にソルーディル法は、新しい方法として注目されている。CVDでは、Sn(CH₃)₄をはじめ、いろいろな原料が用いられ、減圧下あるいは大気圧下で行われる。膜質および膜厚の均一性に優れた成膜が行えるため、大面積化に向けて、今後改良が進められるであろう。

物理的方法は、真空装置を用いて行われ、一般に装置費用が高いが、膜質と膜厚の均一性に優れた、高品質の成膜が行える。

表4 に各種透明導電膜の方法別による作製例を示す(1)。ITO膜では、10⁻³ Ω・cm台の試料も作製されている。これらの試料において、キャリア濃度（電子濃度）は、およそ 9 x 10¹⁰ 〜 2 x 10¹³ cm⁻³、透明度はおよそ 10〜75cm/Vs、透過率は約 85%以上である。抵抗率は、キャリア濃度と移動度の積に反比例している。作製条件を変化させ成膜を行い、作製膜のキャリア濃度と移動度を求めることにより、キャリア濃度の増大または移動度の増加により低抵抗率化が計られかがわかる。抵抗率、キャリア濃度および移動度の測定は、最も基礎的な電気的測定である。一方、近紫外域から近赤外域の透過率の測定は、最も基礎的な光学的測定となっている。

ITO膜作製では、現在は電子ビーム加熱を用いた真空蒸着とDCマグネトロン方式のスパッタリ

<table>
<thead>
<tr>
<th>膜</th>
<th>成膜方法</th>
<th>原料</th>
<th>成膜温度(℃)</th>
<th>抵抗率(Ω・cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In₂O₃</td>
<td>蒸着</td>
<td>酸化物</td>
<td>350</td>
<td>2 x 10⁻⁴</td>
</tr>
<tr>
<td>In₂O₃</td>
<td>ARE</td>
<td></td>
<td>< 70</td>
<td>4 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>スプレー</td>
<td>塩化物</td>
<td>500</td>
<td>2 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>スプレー</td>
<td>塩化物</td>
<td>450</td>
<td>2.66 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>スプレー</td>
<td>塩化物</td>
<td>450</td>
<td>2 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>蒸着（抵抗加熱）</td>
<td>金属</td>
<td>300</td>
<td>1.8 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>蒸着（抵抗加熱）</td>
<td>酸化物</td>
<td>400</td>
<td>7.13 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>蒸着（EB）</td>
<td>酸化物</td>
<td>>300</td>
<td>2 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>ARE</td>
<td>金属</td>
<td>630</td>
<td>7 x 10⁻⁵</td>
</tr>
<tr>
<td>ITO</td>
<td>ARE</td>
<td>酸化物</td>
<td>200-350</td>
<td>1 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>RFスパッタ</td>
<td>酸化物</td>
<td>450</td>
<td>3 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>RFスパッタ</td>
<td>酸化物</td>
<td>500（アニュール）</td>
<td>1.36 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>RFスパッタ（マグネトロン）</td>
<td>酸化物</td>
<td>370</td>
<td>6.8 x 10⁻⁵</td>
</tr>
<tr>
<td>ITO</td>
<td>RFスパッタ（マグネトロン）</td>
<td>酸化物</td>
<td>170（アニュール）</td>
<td>1.8 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>DCスパッタ（マグネトロン）</td>
<td>金属</td>
<td>400</td>
<td>1 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>DCスパッタ（マグネトロン）</td>
<td>酸化物</td>
<td>400</td>
<td>1.4 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>DCスパッタ（マグネトロン）</td>
<td>酸化物</td>
<td>460</td>
<td>1.15 x 10⁻⁴</td>
</tr>
<tr>
<td>ITO</td>
<td>DCスパッタ（対向カソード）</td>
<td>酸化物</td>
<td>< 80</td>
<td>2 x 10⁻⁴</td>
</tr>
<tr>
<td>SnOₓ</td>
<td>CVD</td>
<td>塩化物</td>
<td>400</td>
<td>4.4 x 10⁻³</td>
</tr>
<tr>
<td>SnO₂</td>
<td>蒸着</td>
<td>酸化物</td>
<td>550（アニュール）</td>
<td>7.5 x 10⁻⁴</td>
</tr>
<tr>
<td>SnO₂</td>
<td>RFスパッタ（マグネトロン）</td>
<td>酸化物</td>
<td>< 90</td>
<td>1.9 x 10⁻³</td>
</tr>
<tr>
<td>SnO₂ (Sb)</td>
<td>スプレー</td>
<td>塩化物</td>
<td>600</td>
<td>8 x 10⁻⁵</td>
</tr>
<tr>
<td>SnO₂ (Sb)</td>
<td>ARE</td>
<td>金属</td>
<td>350</td>
<td>8 x 10⁻⁵</td>
</tr>
<tr>
<td>SnO₂ (Sb)</td>
<td>RFスパッタ（マグネトロン）</td>
<td>酸化物</td>
<td>400</td>
<td>2 x 3 x 10⁻³</td>
</tr>
<tr>
<td>SnO₂ (F)</td>
<td>スプレー</td>
<td>塩化物/NH₄F</td>
<td>400</td>
<td>5.5 x 10⁻⁴</td>
</tr>
<tr>
<td>SnO₂ (F)</td>
<td>CVD</td>
<td>塩化物/CH₃CH₂F</td>
<td>520</td>
<td>3.2 x 10⁻⁴</td>
</tr>
<tr>
<td>SnO₂ (F)</td>
<td>CVD</td>
<td>塩化物/Na₂F</td>
<td>420</td>
<td>3.76 x 10⁻⁴</td>
</tr>
<tr>
<td>ZnO</td>
<td>RFスパッタ（外部電界）</td>
<td>酸化物</td>
<td>加熱なし</td>
<td>5 x 10⁻⁴</td>
</tr>
<tr>
<td>ZnO (In)</td>
<td>スプレー</td>
<td>酸化物</td>
<td>375</td>
<td>8 x 9 x 10⁻⁴</td>
</tr>
<tr>
<td>ZnO (Al)</td>
<td>RFスパッタ（外部電界）</td>
<td>酸化物</td>
<td>加熱なし</td>
<td>2 x 10⁻⁴</td>
</tr>
<tr>
<td>ZnO (Al)</td>
<td>RFスパッタ（マグネトロン）</td>
<td>金属</td>
<td>100</td>
<td>5 x 10⁻⁴</td>
</tr>
<tr>
<td>ZnO (Si)</td>
<td>RFスパッタ（外部電界）</td>
<td>酸化物</td>
<td>加熱なし</td>
<td>3.8 x 10⁻⁴</td>
</tr>
<tr>
<td>CdIn₄O₄</td>
<td>スプレー</td>
<td>酸化物</td>
<td>480</td>
<td>3.7 x 10⁻⁴</td>
</tr>
<tr>
<td>Cd₃SnO₄</td>
<td>DCスパッタ</td>
<td>金属</td>
<td>—</td>
<td>4 x 10⁻⁴</td>
</tr>
<tr>
<td>Cd₃SnO₄</td>
<td>RFスパッタ</td>
<td>酸化物</td>
<td>—</td>
<td>4.8 x 10⁻⁴</td>
</tr>
</tbody>
</table>
5. 透明導電膜開発の課題

LCDの高品位化、カラー化、大型化や薄膜トランジスタ（TFT）の駆動、あるいは太陽電池のエネルギーチェンジボタン探査性向上などに伴い、透明導電膜への要求はより厳しくなり、一般的に以下の条件を満たす材料が求められている。

(1) より低抵抗である。
(2) より高透過度である。
(3) 成膜温度はさらに底限に近い。
(4) 高精度低ダメージエッティングが可能である。
(5) 熱安定性に優れている。
(6) 耐湿性、耐アルカリ性に優れている。
(7) 硬度に優れている。
(8) ピンホールフリーやである。
(9) 表面形状に優れている。
(10) 基板への付着性に優れている。
(11) 大面積に均一に作製できる。
(12) 低価格である。

ITO膜のLCD用電極パターン形成は、通常加温した塩酸酸あるいは塩化第二鉄系のエッチング液を用いて行われる。このエッチングの機械についても操作を深める必要がある。高精度化に伴い、ドライエッチングについても活発な研究が進められている。

基本的には、透明導電膜に用いられる酸化物系半導体は、多結晶の化合物半導体(5, 17)であり、かつ経済した半導体(8)である。これらの点は、集積回路に用いられている単結晶シリコンと大きく異なっている。単結晶シリコンは、不純物濃度をはじめ、現在最も精密に制御された半導体である。これに対し、ITO などでは化学量論組成とされている。ここでは、酸素空孔などの格子欠陥を利用して、その制御は不十分である。酸素空孔、不純物などの格子欠陥についての理解も足りない。また、多結晶薄膜のため、結晶粒および結晶粒界の制御が重要である。結晶粒の大きさ、配向性、形状や結晶粒界での不純物偏析などの制御を詳細にすることは必要である。さらに、経済半導体についての理解も深めてみたい。このように、基盤的物性に関する研究がよい深く、実用上の研究とともになされることが今後の課題である。

6. おわりに

現在LCDなどのに用いられる基板は一般にガラス板であるが、将来用としてポリカーボネートなどのプラスチック板やさらにポリエチレンテレフタレート（PET）などのプラスチックフィルムの使用がすでに検討されている。今後、より高品質の透明導電膜の開発に向けて、ITO膜を中心に、作製法の改良あるいは新作製法の開発、添加元素の検討などがさらになされるであろう。低価格の
材料としてはZnOが注目される。新材料としては、多元系の酸化物系化合物（例：（Cd，Zn），SnO₂）、新しい酸化物（例：WやVの酸化物）、新しい窒化物（例：GaN，InN）に期待している。酸化物系が高温超電導体や超電導を示すC₆などのがラーレンが開発されたように、思いがけない材料が透明導電膜にも使われるようになるかも知れない。

（1992-1-20 受理）

文 献

1）日本学術振興会薄膜第131委員会編；薄膜ハンドブック（オーム社，1983）
2）日本学術振興会第142委員会編；液晶デバイスハンドブック（日刊工業新聞社，1989）
3）松本正一編；電子ディスプレイデバイス（オーム社，1984）
4）馬場宜良，山名昌男，山本 寛編；エレクトロクロミックディスプレイ（産業図書，1990）
5）堂山昌男，高井 治編；表面改質データハンドブック（サイエンスフォーラム，1990）
7）原田 悟，高木 悟；表面技術，40，666（1989）
8）勝部能之，勝部巌子；応用物理，49，2（1980）
9）津田豊雄編；電気伝導性酸化物（裳華房，1983）
10）南 内嗣；アイオニクス（IONICS），15，08，97（1989）
11）鯵沼秀臣，永田俊郎，佐々木 基，川崎雅司，高井 治，水崎純一郎，篠木和雄；日本セラミックス 協会学術論文誌，97，1160（1989）
12）機能材料ドライプロセッシング専門会会議編；透明導電膜シンポジウムテキスト（表面技術協会，1990）
13）薄膜第131委員会編；第158回研究会資料（日本学術振興会，1990）
14）石橋 晩，中村久三；ULVAC Tech. J.，（33），8（1989）
15）石橋 晩；ULVAC Tech. J.，（35），31（1990）
16）L. L. Kazmerski ed.；Polycrystalline and Amorphphus Thin Films and Devices（Academic Press, 1980）
17）G. Harbeke ed.；Polycrystalline Semiconductors（Springer-Verlag, 1985）