重力方向に振動する鉛直平板上の単一滴の挙動

白 岩 寛 之*1 細 川 力*2

省エネルギー、省資源の立場から高性能、高効率の熱交換器の開発が望まれている。現在実用化されている表面式熱交換器において、伝熱表面への気体の凝縮現象は伝熱表面が液体に接する場合に生じる膜状凝縮である。一方、伝熱表面が液体に浸されにくい場合には滴状凝縮が生じ、このときの熱伝達率は膜状凝縮の場合よりも著しく大きくなることが明らかにされている。いまだ凝縮滴の挙動と膜状凝縮熱伝達率との定量的な関係は明らかにしていない。本研究では、凝縮滴の凝縮熱伝達特性に影響をおよぼすと考えられる凝縮滴の挙動について、凝縮滴を重力方向に振動させた場合の凝縮滴の落下限界振幅、および落下速度等を実験と計算により求める主な目的とする。

キーワード：実験・理論解析・滴状凝縮・振動・凝結滴・鉛直平板

はじめに

省エネルギー、省資源の立場から、空調システムをはじめ熱エネルギー変換システムに見られる熱交換器の高性能、高効率化が求められている。そこで、著者らは従来、高熱伝達率を有する膜状凝縮現象の凝縮滴挙動と熱伝達の関係について、基礎的研究を継続している。

膜状凝縮を考える場合、凝縮面全体における熱伝達特性に影響をおよぼす凝縮滴の挙動は極めて複雑である。狭い凝縮面の初期凝縮および成長過程の凝縮波の挙動に関して、田中1)の報告が見られるが、凝縮面全体における凝縮滴の熱伝達特性について考える場合、文献2)により明らかにされている凝縮滴の掃除効果および被覆効果等も考慮せねばならず、凝縮滴の挙動と熱伝達率の関係を定量的かつ厳密に求めることが重要である。特に、凝縮滴の挙動としては、凝縮線上端付近の凝縮滴の挙動および凝縮滴の熱伝達特性が下部凝縮面の凝縮現象に影響を及ぼし、凝縮面全体の熱伝達特性に関わる重要な要素となることが考えられる。

本研究では、凝縮滴の挙動における熱伝達特性に影響をおよぼす凝縮滴の挙動について、比較的小さい凝縮面を重力方向に変位正弦加振した場合を対象に、基礎的考察として、まず、大気中において振動板上の単一滴の低下限界振幅および低下速度などを実験および簡単な計算モデルによる数値計算より求め、実験値と計算値を比較検討する。なお、蒸気側の蒸気振動による平板上の滴状凝縮については、中田ら4),5)の報告が見られる。

使用した主な記号

<table>
<thead>
<tr>
<th>符号</th>
<th>意味</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>振幅</td>
<td>[m]</td>
</tr>
<tr>
<td>b</td>
<td>接触面直径</td>
<td>[m]</td>
</tr>
<tr>
<td>C</td>
<td>積分定数</td>
<td>[m/s]</td>
</tr>
<tr>
<td>d</td>
<td>滴径</td>
<td>[m]</td>
</tr>
<tr>
<td>d_n</td>
<td>滴の縦径と横径の平均径</td>
<td>[m]</td>
</tr>
<tr>
<td>d_L</td>
<td>落下限界径</td>
<td>[m]</td>
</tr>
<tr>
<td>d_o</td>
<td>膜状凝縮の離脱径</td>
<td>[m]</td>
</tr>
<tr>
<td>g</td>
<td>重力加速度</td>
<td>[m/s²]</td>
</tr>
<tr>
<td>M</td>
<td>滴の質量</td>
<td>[kg]</td>
</tr>
<tr>
<td>R</td>
<td>運動に対する摩擦抵抗係数</td>
<td>[N]</td>
</tr>
<tr>
<td>r</td>
<td>半径</td>
<td>[m]</td>
</tr>
<tr>
<td>t</td>
<td>時間</td>
<td>[s]</td>
</tr>
<tr>
<td>U</td>
<td>振動板に対する滴の落下速度</td>
<td>[m/s]</td>
</tr>
<tr>
<td>U_{max}</td>
<td>無加振時の滴の落下速度</td>
<td>[m/s]</td>
</tr>
<tr>
<td>U_{st}</td>
<td>加振時の滴の落下速度</td>
<td>[m/s]</td>
</tr>
<tr>
<td>V</td>
<td>重力方向に対する滴の落下速度</td>
<td>[m/s]</td>
</tr>
<tr>
<td>v</td>
<td>平板振動速度</td>
<td>[m/s]</td>
</tr>
<tr>
<td>X</td>
<td>滴の落下距離</td>
<td>[m]</td>
</tr>
<tr>
<td>x</td>
<td>平板振動変位</td>
<td>[m]</td>
</tr>
<tr>
<td>Y</td>
<td>平板表面からの高さ</td>
<td>[m]</td>
</tr>
</tbody>
</table>

*1 姫路工業大学 学生会員
*2 姫路工業大学 正会員
本論は、第 32 回近畿支部学術研究発表会において発表したものである。
1. 実験装置および実験方法

1.1 静止滴の滴径と接触角に関する実験

平板上の単一滴の挙動に関して、いくつかの論文が報告されている。それらの論文より一般に、液滴の種類、平板の表面性状、そして、滴周囲などの諸条件が、滴形状あるいは滴下限線滴径さらには滴下滴の滴挙動に対し、大きな影響を与える。そして、平板上の滴の接触角は平板の表面性状とも関連し、滴の挙動に影響をおよぼす。そこで、まず静止平板上の滴の接触角を種々の滴径において測定する。

テストプレート（鋼平板）に滴状凝縮の促進剤としてオレイン酸を塗り、鉛直に設置する。その状態で注射器により任意の大きさの蒸留水（密度 $\rho = 999\text{kg/m}^3$）の滴をテストプレート上に滴下する。その後、ビデオカメラで約10倍に拡大し、カラーモニタを用いることにより滴のみかけの前進接触角 θ_1 と後進接触角 θ_2 を測定する。接触角の測定は、図1に示すように滴の映像の上から多数の同心円を描いた透明なシートを滴と試験面との接触部付近に重ねる。次に、滴の周辺部に最も一致する円の半径 r および、中心 O とプレートとの距離 h を測定することによりみかけの接触角を求める。

1.2 単一落下滴の挙動に関する実験

次に、振動平板上の単一滴の挙動に関して、振動平板上の単一滴に着目し、各振動数における落下限界滴径、落下速度等の測定を行う。

本実験に使用した実験装置の構成図を図2に示す。テストプレート③は滴状凝縮の促進剤であるオレイン酸を塗布した鋼板($80 \times 80\text{mm}$)を使用し、加振器①、振動発生器⑥によって振動($x=4\sin(2\pi t)$)；x: 平板の振動変位, A: 振幅, v: 振動数, t: 時間)を発生させ、任意の条件に調節される。テストプレートの全振幅 24 は変位センサ④とテストプレートの端面に取り付けたプローブ⑤（しんちゅう片）との間に生ずる
重力方向に振動する鉛直平板上の単一滴の挙動

る滴電流による電圧変化をオシロスコープ③によって電圧として測定する。また、電圧と変位の関係は、あらかじめ測定して得られた校正表より求める。なお、テストプレート上の滴の挙動を振動発生時よりビデオカメラにより記録撮影し、テストプレート上の静止滴の落下、移動が確認され、滴の下限を測定後、そのときの振動数を下限振動数

また、同様の実験装置を用い、測定面が定常振動状態になったとき、鉛直振動平板上の任意の滴を注入容器より形成させ、時間経過に対する滴の最前端位置をデジタルカメラにより測定することで滴の下限距離と時間の関係を得る。

2. 実験結果および考察

2.1 滴径および接触角

図-3 に、平均滴径 \(d_m\) と実験により求めた前進接触角 \(\theta_a\) および後進接触角 \(\theta_b\) の余弦の差 \(\cos \theta_b - \cos \theta_a\) との関係を示す。ここで、\(d_m\) 是滴の縦径と横径との平均径である。図-3 より、鉛直振動平板上の単一滴は滴径が大きくならず、後端と前端の接触角差が大きくなり、後述する滴の下限挙動に影響を与える。図-3 の実験値より、次の実験式(1)を求める。

\[
\cos \theta_b - \cos \theta_a = 2(1 - e^{\beta \gamma})
\] ……(1)

ここで,
- \(\theta_b\) : 後進接触角 [rad]
- \(\theta_a\) : 前進接触角 [rad]
- \(\beta\) : 定数 [-]
- \(d\) : 滴径(=\(d_m\)) [mm]
- \(\gamma\) : 定数 [-]

ただし、\(\beta = -0.1059 \times 10^3\), \(\gamma = 0.07116\) である。

2.2 滴下滴の挙動

図-4 に、パラメータとして振幅 \(A\) を 0.5, 1.5mm としたときの下限振動数 \(v\) と下限下限径 \(d_m\) の関係を示す。破線は傾向曲線を示す。振幅による有意な差は見られないが、\(v\) が増加すると、\(d_m\) は減少する。ただし、\(d_m\) の減少割合は、\(v\) の増加に伴って減少するようである。

図-5 に、振幅 \(A=1.5\)mm における滴の下限距離 \(X\) と時間 \(t\) の関係を 0.3s 1/30s 毎に図示する。なお、縦軸は試験面に滴の下限位置を原点とした位置を示している。図-5 より、滴径に多少の差異はあるが、ほぼ同滴径のとき振動数 \(v\) が増加すると単位時間当たりの滴の下限距離も増加することがわかる。
3. 計算および検討

3.1 落下限界滴径

(1) 計算式の導入

一般的に凝縮面上端部の凝縮滴は、初生滴の発生からだいに成長し、いずれはその自重に耐えきれず離脱する。しかし、凝縮滴に作用する外力はその重量の原因より大きく、凝縮滴は離脱滴径よりも小さい滴径で落下する。そこで、本研究では凝縮面を重力方向に変位正弦加振し、振動加速度による外力が凝縮面を通して凝縮滴に加わることにより、凝縮滴は無加振時と比較して、小さい滴径で落下するものと考えられる。図-6は、付着凝縮滴に加わる加速度を模式的に示したものであり、重力加速度をg、振動による最大加速度をA(2πν)^2とすると、合成された加速度a_{ib}は次式で表される。

\[a_{ib} = g + A(2\pi\nu)^2 \]

一方、横沢9)は実験により、遠心加速度場において落下限界滴径が加速度のほぼ1/4乗に反比例して小さくなることを明らかにしている。そこで、本研究においても合成加速度a_{ib}と落下限界滴径d_eの間には、次式の関係があると考えられる。

\[d_e = d_0 \left(\frac{a_{ib}}{g} \right)^{1/2} \]

ここで、

- \(d_0 \)：凝縮滴の離脱滴径 [m]

ただし、\(d_0 \)は平均接触角\(\theta_e = (\theta_0 - \theta_i)/2 \)を\(\pi/2 \)としたとき、理論的に2.2mmとなり、実験9)において同様の結果が報告されている。

(2) 計算結果および検討

振動の振幅Aを0.5, 1.0, 1.5mmとし、振動数νを0〜30Hzとしたときの落下限界滴径d_eを求め、図-7に示す。振動パラメータのAおよびνの増加により落下限界滴径d_eは減少することがわかる。

次に、図-8に、落下限界滴径d_eを離脱滴径d_0で除した値と比加速度\((g + A(2\pi\nu)^2)/g)の関係を示す。図中の値は図-7より得られる計算結果および2.2節で得た実験結果である。実験値にパラツキは見られるが、その傾向は計算値とよく一致している。本研究範囲では、比加速度\((g + A(2\pi\nu)^2)/g)が増加するとd_e/d_0の値は減少し、本実験の最大比加速度のとき、減少率は最大約40%になることがわかる。
3.2 落下速度および落下距離
(1) 計算式の導入
平板上の落下滴は、比較的質量が小さく落下距離も短い場合、無尾滴として落下し、落下運動中变形せずに一塊となって落下する。しかしながら、落下滴の落下速度は平板表面の性状、あるいは接触角の変化などの影響を受け、厳密に解釈することは極めて困難である。ここでは、図-9に示す鉛直振動平板上の単一滴の落下挙動モデルについて計算を行う。静止座標系に関して、鉛直平板上の単一滴の一般運動方程式は、次式で与えられる。60

$$M \frac{d^2v}{dt^2} = Mg - \sigma \int_0^R (\cos \theta_R - \cos \theta_A) \, dB - R \quad \ldots \ldots \ldots \ldots (4)$$

ここで,
- M : 滴の質量 [kg]
- V : 静止座標系に対する滴の落下速度 [m/s]
- σ : 表面張力 [N/m]
- b : 滴の接触面直径 [m]
- R : 運動に対する摩擦抵抗 [N]

式(4)の右边第2項の $\cos \theta_R - \cos \theta_A$ は、滴の任意の観察面における接触角の関係であるが、これを理論的に求めるのは困難であるため、実験式(1)を用いる。また、右边第3項の R は空気の抵抗を無視すれば、固液界面の粘性による摩擦抵抗のみとなり、この場合、落下滴の質量が比較的小さいと考えると、滴の落下速度は速くないと言わせ、滴内の速度分布を鉛直平板表面からの高さ Y に対して1次分布とする。このとき、摩擦抵抗力 R は、次式で表される。

$$R = \frac{\mu}{8} \pi f(\theta_m) \left(\frac{M}{\rho} \right)^{\frac{1}{2}} (V - v) \quad \ldots \ldots \ldots \ldots (5)$$

ここで、
- μ : 粘度 [Pa·s]
- $f(\theta_m)$: 滴形状を球欠とするときの平均接触角 θ_m に対する係数 [-]
- v : 平板の振動速度 [m/s]

ただし、$f(\theta_m)$, v はそれぞれ次式で表される。

$$f(\theta_m) = \frac{2 \sin \theta_m}{\pi (1 - \cos \theta_m)^2 (2 + \cos \theta_m)} \quad \ldots \ldots \ldots \ldots (6)$$

$$v = A(2\pi v) \cos(2\pi v) \quad \ldots \ldots \ldots \ldots (7)$$

式(4)に式(1), (5)を代入し V について解くことにより、静止座標系に対する滴の落下速度 V は次式で表される。

$$V = \frac{M}{\rho} \frac{2\sigma}{\beta} \left(b - e^{\beta v} - e^{-\beta v} \right) + \frac{P^2 A(2\pi v) \cos(2\pi v) + MPA(2\pi v)^2 \sin(2\pi v)}{M^2 (2\pi v)^2 + P^2}$$

$$+ Ce^{\frac{P}{M}} \quad \ldots \ldots \ldots \ldots (8)$$

ここで、
- C : 積分定数 [m/s]

ただし、$P = \mu^2 \int f(\theta_m) (M/\rho)^{\frac{1}{2}} 8$ である。そして、振動板に対する滴の落下速度 U は、初期条件 $U=0$ で $V=0$ である。積分定数 C を決定することにより、次式で与される。

$$U = V - v$$

$$= \frac{M}{\rho} \frac{2\sigma}{\beta} \left(b - e^{\beta v} - e^{-\beta v} \right) - A(2\pi v) \cos(2\pi v)$$

$$+ \frac{P^2 A(2\pi v) \cos(2\pi v) + MPA(2\pi v)^2 \sin(2\pi v)}{M^2 (2\pi v)^2 + P^2}$$

$$+ \left\{ \frac{M}{\rho} \frac{2\sigma}{\beta} \left(b - e^{\beta v} - e^{-\beta v} \right) + A(2\pi v) \right\} e^{\frac{P}{M}} \quad \ldots \ldots \ldots \ldots (9)$$

97
さらに、滴の落下距離 X は、式(9)を積分し、初期条件($t=0$ で $X=0$) より積分定数を決定することにより次式となる。

$$\begin{align*}
X = & \left\{ \frac{Mg}{P} - \frac{2\sigma}{P} \left(b - \frac{e^{\beta t} - e^{-\beta t}}{\beta} \right) \right\} t - A(2\nu) \sin(2\nu t) \\
& + \frac{P^2 A \sin(2\nu t) - MP(2\nu) \cos(2\nu t)}{M^2(2\nu)^2 + P^2} \\
& - \frac{P^2 A(2\nu) e^{-\frac{P}{M} t}}{M^2 g} \\
& + \frac{2M\sigma}{P^2} \left(b - \frac{e^{\beta t} - e^{-\beta t}}{\beta} \right) + MA(2\nu)
\end{align*}$$

(10)

(2) 計算結果および検討

式(9), (10)より落下速度 U、落下距離 X を求める際、本計算では滴を半球状と仮定し $\theta_m=\pi/2$、$b=d$ とし、物性値には20℃の値を用いて計算を行った。

図-10、図-11は、それぞれ液径 $d=2.0mm$、振幅 $A=1.5mm$ のときの各振動数における滴の落下速度および時間経過tに対する無振動時の落下速度 U_{∞} と加振時の落下速度 U_{ini} の比 $U_{\text{ini}}/U_{\infty}$ の分布値を示す。図-10、図-11 より、落下直後においては各振動数に比例して無加振速度よりも加振速度が大きくなっていることがわかる。そして時間経過にしたがい、滴の落下速度は各振動数ともしに無加振の場合の落下速度に振れながら収束する。さらに、振動数が増加すると、落下速度の振れも大きくなり、波長は短くなる。

図-12に、滴の落下距離 X と時間の関係に関する実験および計算結果を示す。図-12 より、実験および計算の両結果において、定性的ではあるが振動数の増加にともない落下距離の速度は速くなることがわかる。しかし、計算値と実験値の比較では、計算値による落下距離は実験値のそれよりも約 5 倍も値を示している。これは、計算の接触面の抵抗値の不充分さ、および実験における、固体表面上の残滴の影響などが大きいと考えられるが、いずれも解析は極めて困難であり、今後、研究が望まれる。

おわりに

凝縮面を重力方向に変位正弦加振した場合における落下滴の挙動について、実験および計算を行うことにより、本研究範囲において以下の結論を得た。

(1) 前進接触角と後進接触角との関係の実験式を得た。
(2) 加振による振動数および振幅の増加は落下限界滴径を減少させる。
重力方向に振動する鉛直平板上の単一滴の挙動

(3) 落下滴の落下速度は、実験および計算の両結果において定性的ではあるが振動数の増加にともない速くなる。そして、時間経過に対して加熱加振の場合の落下速度に振れながら収束する。

謝辞
本研究の遂行にあたり、元姫路工業大学在生の阿部隆司君の御協力に深謝します。

参考文献
1) 田中安明：液状凝縮に関する理論的研究、機論、39(1973)、pp.3099-3113。
2) 櫻沢一郎：伝熱工学の進展 4(1976)、pp.229-325、養賢堂。
3) 細川力、他3名：水平円管外表面の滴状凝縮熱伝達、機論(B編)、51-472(1985)、pp.4055-4062。
4) 中田敏夫、他3名：脈動噴流蒸気中における鉛直平面上の滴状凝縮熱伝達、空気調和・衛生工学会論文集、84(2002)、pp.71-76。
5) 中田敏夫、他3名：脈動噴流蒸気中における鉛直平面上の滴状凝縮熱伝達、空気調和・衛生工学会論文集、88(2003)、pp.33-41。
6) 何谷隆：液状凝縮熱交換器の研究、機論(B編)、32-233(1996)、pp.107-115。
7) 高橋隆：液水の研究、機論、17-60(1951)、pp.170-176。
8) 櫻沢一郎、他3名：液状凝縮過程の実驗的研究、機論(B編)、42-361(1976)、pp.2846-2853。
9) 細川力、他3名：水平円管外表面の液状凝縮熱伝達の研究、機論(B編)、49-447(1983)、pp.2478-2482。
10) 土崎義雄、桜沢一郎：水蒸気の液状凝縮における凝縮曲線の測定、機論(B編)、47-420(1981)、pp.1620-1628。

（2003年8月25日 原稿受付）

The Behavior of a Single Drop on the Vibrating Vertical Plate in the Gravity Direction

by Hiroyuki Shiraiwa*1, Tsutomu Hosokawa*2

Key Words : Experiment, Theoretical Analysis, Dropwise Condensation, Vibration, Drop Behavior, Vertical Plate

Synopsis : Recently, the development of the high-performance heat exchanger is desired from the viewpoint of energy saving and resource conservation. The application to the heat exchanger of dropwise condensation phenomenon which shows high heat transfer performance is desired. However, the relationship between behavior of the condensate drop and heat transfer on the wide heating surface in dropwise condensation has not been clarified.

In this study, the behavior of a single water droplet on the vertical plate which vibrates for the purpose of the analysis of dropwise condensation phenomenon on vibration heating surface in the gravity direction is examined. As a result, it was possible to obtain the falling limitative drop size of an adhesion drop and the velocity of a falling drop, etc. by experiment and calculation. And, the possibility of attaining the heat transfer enhancement by the excitation was shown.

(Received August 25, 2003)