光触媒反応による室内汚染物質濃度低減性能の数理モデル化と数値予測

第1報——小形チャンバーを用いた濃度低減性能試験と濃度依存性を考慮した光触媒反応モデルの提案

Eunsu Lim*1 山本 清司*2
住吉 栄作*3 山口 貴大*3
伊藤 一秀*4

サステナブル建築への移行に社会的関心が高まっている中、エネルギーコストを減少させずに室内空気質を向上する技術の開発は、その要素技術として必要である。本研究では、室内環境中のガス状污染物質濃度をパッシブに濃度制御する技術として光触媒反応に着目し、酸化チタン(TiO₂)を担持させた建築材料の性能評価法を確立すると共に、室内汚染物質濃度の低減性能を数値的に精度良く定量評価するための数理モデル開発に取り組む。本報(第1報)では数値流体力学 CFD による室内濃度予測に組み込み可能な Langmuir-Hinshelwood 型の光触媒反応モデルを提案した上で、代表的な室内ガス状污染物質としてトルエンに着目し、独自開発した20L小形チャンバーを用いて濃度低減性能試験ならびにモデルパラメータ同定を行った。その上で、実験条件に対する CFD 解析を併せて実施することで、小形チャンバー内の速度場・濃度場の不均一性を考慮した上で精度良くモデルパラメータ同定する方法を提案した。

キーワード：光触媒反応・Langmuir-Hinshelwood モデル・小形チャンバー試験・数値流体力学

1. 序

九州地域では大気からの悪臭汚染物質の飛来に伴う大気エアロゾル濃度、光化学オキシダント濃度の上昇が大きな社会問題とされており、換気によって室内へ導入する外気は清浄であるとの前提が成立しない状況となっている。また、室内環境に視点を移せば、建築材料、家具・什器などから発生する VOC（揮発性有機化合物）や、人体起源ならびに微生物起源の臭気物質といった知覚汚染物質が多様に存在しており、GC/MS などの分類にとって、数十から数種類以上 VOC が検出されることも稀ではない。これらの物質は居住者に不快感を与えると共に、MCS（化学物質過敏症）やシックハウス症候群を引き起こす原因の一つとなってしまっていることが指摘されており、すでに様々な規制・対策が行われている。この問題に対する建築環境工学的対策は、発生源対策ならびに発生後の換気・吸着・分解等の対策の 2 つに大別されるが、特に後者の対策として、近年では光照射のみで有機化合物を分解する光触媒反応に着目した研究開発が多く行われており、室内建材への応用も含め、その結果が報告されている。しかしながら、室内環境条件での使用を前提とした場合の濃度低減性能評価法に関しては、現状でも研究段階にあると云える。例えば、吸着建材の評価法として用いられている ISO16000-23, ISO16000-24 などの小形チャンバー法の標準化を試みている。JIS A 1901 では、光照射を前提とした実験方法を対象としており、光触媒建材の性能評価を目的にした JIS R 1701 で、ISO22197 では、使用する材料の形状や流量設定が室内環境条件とは大きく異なるという問題がある。

このような背景のもと、本報を含む一連の研究では、光触媒反応を期待して酸化チタン(TiO₂)を担持させた建築材料の実験的な性能評価法を確立すると共に、室内濃度の低減性能を数値的に定量評価するための数理モデル開発に取り組むものが、特に本報(第1報)では、光触媒反応のモデル定数同定を目的とした 20L 小形チャンバーによる試験法の概要の他、一定濃度供給法による濃度減衰試験の結果、ならびに CFD 解析を併用した光触媒反応モデルの数値定数同定方法に関して報告する。

2. 光触媒反応とそのモデル化

光触媒反応の歴史は、水を光により分解することを発見し
た「本多—藤崎効果」と呼ばれる光電気化学反応にある。
この効果は Nature 種に論文が掲載された後、第 1 次オールショックを契機に世界中から注目され、太陽エネルギーから石油代替エネルギーとして水素利用の期待が高まっていた時期でもあり、更に植物が二酸化炭素を還元して有機化合物を得ていることから、有機合成反応に利用しようとする研究も開始された。現在でも精力的に研究が続けられているが、90 年代以降環境中の有害物質などを分解し環境浄化に利用する試みが始まり、酸化力を活かした有害物質の除去に関する研究開発が継続的に取り組まれており、一部、建築材料関連や衛生設備機器で实用化・商品化されている 12)

光触媒反応の 2 つの基本反応として、「酸化分解」「超親水化」が挙げられる。超親水化(光誘起超親水化)に関しては本研究の対象とは異なるため、以下、酸化分解反応に関して整理する。

光触媒反応では、触媒(TiO2 が良く知られている)表面上に光を照射することにより励起された伝導電子と空気中の酸素が反応し、強力な酸化分解力を持つ O2(スーパーオキサイドイオン)を、励起により生成した正孔が空気中の水分と反応して、強力な酸化分解力を持つ・OH(水酸解ラジカル)の 2 の活性酸素が生じる。この活性酸素により、有機物は酸化分解され、最終的に二酸化炭素と水に変化する。この反応は光照射量により変化し、反応による温度上昇がなく室温の状態で反応が進行する。

光触媒反応の数理モデル化には様々なアプローチがあるが、対象とする汚染物質の触媒表面への吸着とその後の酸化分解反応に分けて整理されることが一般的である。汚染物質として VOC(本研究ではトルエンを実験に使用)を想定した場合、その光触媒反応面への吸着現象は Langmuir の吸着等温式より、式(1)で示される。

\[
\theta_{VOC} = \frac{KC_{VOC}}{1 + \frac{K}{C_{VOC}}}
\]

ここで、\(\theta_{VOC}\)は吸着平衡定数(mg/kg)、\(C_{VOC}\)は吸着平衡定数(μg/m²)、\(K\)は吸着平衡定数(m³/kg)、\(C_{VOC}\)は吸着平衡定数(μg/m²)を示す。

トルエンの光触媒反応により吸着反応メカニズムはその反応経路を含めて現時点でも完全に解明されている訳ではないが、気相のトルエンは光触媒反応によって発生した活性酸素種によって酸化分解されていると考えるのが通例であり、トルエンと酸素が吸着サイトを共有して両者の吸着現象が同時に同一サイトで反応していると考えるのが妥当であろう。この場合、物理吸着したトルエンの一部が光触媒反応により酸化分解される反応速度式(2)の様に反応速度を示した二分子反応モデルとして示される 13)。

\[
r' = k'\theta_{VOC}\theta_{O_2,ads}
\]

ここで、\(r'\)は単位体積当たりの反応速度 [kg/m³/s]、\(k'\)は単位体積当たりの反応速度定数[kg/m³/s]、\(\theta_{O_2}\)は酸素の被覆率[-]を示す。今回の実験では、トルエンの濃度に比べて十分な量の酸素が供給されていることから、\(\theta_{O_2}\)を 1 と近似することができるため、式(1)と(2)より光触媒反応モデルは式(3)となる。

\[
r' = \frac{k'KC_{VOC}}{1 + \frac{K}{C_{VOC}}}
\]

この反応モデルは Langmuir-Hinshelwood 型モデルと呼ばれ、光触媒反応を再現する数理モデルとして広く利用されている 14)。本研究でもこの Langmuir-Hinshelwood 型モデルを採用する。

3. 試験材料

光触媒反応は、その名の通り触媒反応であることにより進行する。酸化チタン(TiO2)光触媒反応に利用できる光については、一般に光の波長が 380nm 以下の近紫外線のみとされてきたが、近年、ルチル型の開発が進んでおり、更にルチル型では十分な波長範囲において光触媒反応が起こることになっている。

前述のとおり、光触媒(TiO2)を有効にすることにより室内汚染物質濃度低減を目指した多くの製品が開発されているが、TiO2 を有効に使わないようにするバインダーや光触媒反応速度が低下し、これは基材となる構築の物理吸着性能を低下する可能性が指摘されている。本研究では、バインダーや分子に高温著色技術に TiO2 を対象建材表面に吸着させる吸着法を用いて、バインダーや分子に TiO2 を吸着させた建材を試験片として使用した。この方法は溶融した TiO2 を超高速で基材に打ち込むため、特殊なバインダーを使用せずとも高密度の光触媒皮膜を形成することが可能で、耐久性も検証されている。また、本報での実験では、ルチル型の TiO2 を採用することで可視光域の 413nm 波長の光に高い光触媒特性を有した可視光応答型光触媒建材(光触媒建材)を対象とし、これは一般的に蛍光灯の光でも光触媒活性を期待するものである。光触媒建材のサイズは 0.147m×0.147m であり、建材の片面のみ光触媒皮膜を施している。

4. 基礎実験概要

本報での基礎実験では、独自開発した 20L 小形チャンバーを用いて、一定濃度供給法によるトルエン濃度低減試験を実施する。

4.1 小形チャンバー概要

本試験では、光触媒建材の低濃度条件実験に直方体 20L 小形チャンバーを ISO 16000-9(1)に準拠して製作し用いた。チャンバーサイズは 0.25m(W)×0.25m(D)×0.32m(H)であり、チャンバー本体は塩化ファン、パンチングテープ

Eunsu・山本・住吉・山口・伊藤：
以下の内容を自然な文脈に読みやすいように再構成します。

光触媒反応による室内汚染物質濃度低減性能の数理モデル化と数值予測(第1報)

小形チャンバーを用いた試験概要を図-1に示す。チャンバーは温度28℃で制御された恒温槽内に設置し、トルエンガスを含む供給空気は、温度28℃、相対湿度0%に制御した。本研究では対象汚染物質であるトルエンと周囲気の酸素との反応を想定しており、これらの要素は極度単純化するため、湿度条件を0%とした。試料負荷率Lは2.2 m³/m³、光源は照度600 lx（透明ガラスを介した建材表面での測定値）とした。攪拌フランの回転数は1000rpmに制御し、試料表面付近の代表点（中心点）の気流速度を0.1m/s程度とすることで、試験建材が実際に室内で使用される状態と同様の物質伝達状態となるように調整した。この条件は、ISO 16000-23および24で規定された物質伝達率条件に従うものである。濃度低減性能試験はISO 16000-23、ISO 16000-24に準拠した一定濃度供給法として、70〜800μg/m³の一定濃度のトルエンガスをチャンバーに供給した。トルエン濃度の測定には、校正用ガス調整装置（Permeater）を用いた。チャンバー内換気回数は0.5回/hであり、この場合の20L小形チャンバーに対応する供給空気量167 mL/minとなる。試験開始直後のチャンバー入口における供給空気[初期濃度 C₀](および試験開始時刻／時間後[実=4, 12, 24, 48時間]のチャンバー出口における排気空気[測時後濃度 単一値]をそれぞれ捕集管（Tenax GR）に5L（サンプリング時間30分）捕集した。Tenax GRは加熱脱着後にGC/FID（GC-2014, Shimadzu）で定性・定量分析した。

また、光触媒建材によるトルエン濃度の低減率は式(4)に用いて評価した。

\[\eta = \frac{C_n - C_{out}}{C_n} \quad \cdots (4) \]

ここで、μは濃度低減率(Conversion)を示す。

4.3 実験ケース

本研究で実施した基礎実験の実験ケース一覧を表-1に示す。本報では建材表面照度を600 lx一定とした。濃度依存性を検討するために供給トルエン濃度を70 μg/m³から800 μg/m³の範囲で複数設定し、合計7ケースの実験を実施した。実験ケースには含まれていないがチャンバー内に光触媒建材を設置しない条件下で、チャンバー内で壁面に対するバックグラウンド吸着量の評価実験も実施している。また、基本ケース
5. 実験結果

5.1 濃度低減性能試験結果

同一建物、同一照明の条件で、供給トルエン濃度のみを変化させた場合の換気濃度の経時変化を図-2に示す。図中の濃度は供給濃度 C_0 を用いて基準化した無次元濃度である。

全ての条件において供給濃度に対する排気濃度は 0.5 以下の減衰した。変動はあるものの、試験開始 12 時間後には概ね定常状態に達していることを確認した。条件によっては、$t=4$ 時点の濃度と $t=12$ 時点の濃度に大きな差が見られた。これは、本実験は換気回数 0.5 回/h. すなわち名目換気時間 t_a が2 時間となり、チャンバー内の完全混合には名目換気時間 t_a の2～3 倍の時間スケールが必要であることを示します。$t=4$ 時点での濃度サンプリングは完全な定常濃度に達していなかった状態のデータである可能性が示唆される。また、最も低濃度を対象とした Case 1 では $t=12$ 時点での無次元濃度を比較して $t=24$ 時点での無次元濃度が高くなっているが、これは低濃度を対象としたサンプリングと GC/FID にによる濃度分析の誤差と考えられる。以降の検討では、C_{at} として $t=12$ と $t=24$ 時点の算術平均値を採用する。

全条件の濃度低減率 $\eta \%$ は図-2に示す。供給濃度が高くなるにつれて濃度低減率は低くなる傾向を示す。供給濃度 C_0 が低い Case1, 2 では、濃度低減率 $\eta \%$ がそれぞれ 0.80, 0.88 と高い値を示し、C_0 がその 2 倍程度の Case3, 4 では $\eta \%$ がそれぞれ 0.69, 0.68 と減少した。C_0 が Case1, 2 の 6 倍程度の Case5, 6 では、濃度低減率 $\eta \%$ はほとんど変化しなかったが、その 10 倍程度の Case7 では $\eta \%$ が 0.51 と低くした。これらの実験結果より、対象建物表面での光触媒反応の濃度依存性が確認された。

5.2 光触媒反応モデルと実験結果を用いたモデル定数の同定手順

本研究では光触媒反応のモデル化として、式(3)で示した Langmuir-Hinshelwood 型の反応モデルを採用する。式(3)は体積当たりの反応として定義されているが、本実験では建物表面と（次元平面）上の反応となっているため、式(5)に書き換える。

$$ r = \frac{kkC}{1 + kC}, \quad \text{式}(5) $$

ここで、C は小形チャンバー内の中層濃度（供給濃度 C_0 [kg/m²]). r は単位面積当たりの反応速度 [kg/m²s] を示す。また、k は吸着平衡定数 [m²/kg]. k は単位面積当たりの反応速度定数 [kg/m²s] を示す。

式(5)の両辺逆数をとると(6)式となる。

$$ 1 = \frac{1}{kkC} + \frac{1}{r}, \quad \text{式}(6) $$

小形チャンバー内の流れ場、濃度場等の不均一性を無視した上でチャンバー内を質点系と想定することで、Langmuir-Hinshelwood 型のモデル定数を同定することが可能となる。即ち、質点系を仮定することで実験結果を用い、式(7)より単位面積当たりの反応速度 $r [kg/m²s]$ が算出できる。

$$ r = \frac{Q}{A} (C_{at} - C_{am}), \quad \text{式}(7) $$

C_{am} ならびに C_{at} はトルエンの供給濃度と排出濃度(単位は [kg/m²]). Q は小形チャンバーヒンシェルウッド [m²s] (= 0.01/3600). A は光触媒建材の表面積 [m²] を示す。

式(7)を用いて算出した実験条件の $r [kg/m²s]$ を表-2に併せて示す。r ならびに代表濃度 C_{am} のデータセットは実験ケースの数だけ存在するため、これらを最小二乗法で線形近似することで式(5)のモデル定数 k ならびに K を同定すること
光触媒反应による室内汚染物質濃度低減性能の数理モデル化と数値予測（第1報）

が可能となる。

5.3 完全混合仮定条件でのモデル定数同定結果
小形チャンバー内の質点系を仮定し、実験データを用いて式(7)から反応速度定数$r[\mu g/m^2s]$を算出した上で、供給濃度をとの関係を図-3に示す。図-3の結果に式(6)を適用し、最水二乗法にてモデル定数kを同定した結果、kは4.85×10^{-11} kg/m^2s、Kは1.16×10^6 m/kgが得られた。

6. 数値解析
本研究では、前節で示したLangmuir-Hinshelwood型の反応モデルをCFD解析へ組み込むと共に、実験結果とCFD解析を併用することで、モデルパラメータ同定精度の向上を検討する。

6.1 トルエン濃度の移流・拡散方程式と反応モデル
本研究では、数値流体力学CFDによる室内流れ場解析に連成する汚染物質の濃度場解析にLangmuir-Hinshelwood型の反応モデルを統合する。ここではトルエン濃度の移流・拡散方程式(移流・拡散方程式)にSource TermとしてLangmuir-Hinshelwood型モデルを組み込む。

空間のある点におけるトルエン濃度をCとすると、トルエン濃度の移流・拡散方程式は式(8)で示される。本研究ではRANSモデルによる解析を前提として、アンサンブル平均された方程式系を示す。

$$\frac{\partial C}{\partial t} + \frac{\partial U C}{\partial x} = \frac{\partial}{\partial x}\left(D + \frac{\nu_0 C}{\sigma_x} \frac{\partial C}{\partial x} \right) + S_{PCO} \quad \ldots \ldots (8)$$

ここで、オーバーパー(-)はアンサンブル平均値を、Dはトルエンの分子拡散係数[m^2/s]、Uは風速[m/s]を、νは渦動粘性係数[m^2/s]、σ_xは乱流シュミット数[-]、S_{PCO}は光触媒反応によるトルエン濃度の低減効果を再現するSource Term [kg/m^2s]を示す。

本研究では、材表面に接する第一セル(ここでは低Re数モデルによる解析を前提として粘性底層内(特にWall Unit過小な領域)を想定)のみにSource Term S_{PCO}をSink Termとして与えることで光触媒反応をモデル化する。モデル化の概念図を図-4に示す。本研究では、5.2ならびに5.3で示したLangmuir-Hinshelwood型モデルをSource Termとして、即ち、表面反応と粘性底層内の仮想空間($y'<1$)での体積反応として次式でモデル化する20.

$$S_{PCO} = \frac{k'KC}{1 + KC} \quad \ldots \ldots (9)$$

ここで、Kは吸着平衡定数[m^2/kg]、k'は体積当たりの反応速度定数[kg/m^2s]を示し$k' = k'/y_I$(y_Iは壁面第一セルの法線方向高さ)である3)。

このモデル化は、式(9)が壁面表面の粘性底層内に適用され
6.2 数値解析を併用した反応モデル定数の同定概要

実験に使用した20L小形チャンバーの幾何形状ならびに実験の境界条件を再現したCFD解析を実施する。解析対象空間を図-5に示す。実験に使用した20L小形チャンバーの幾何形状ならびに境界条件をほぼ正確に再現した、前節で示したLangmuir-Hinshelwood型の反応モデルは試験基材表面の第一セル（n=1）のみに適用する。発表5.3で示した実験結果のみからパラメータ同定した結果の着壁平衡定数K_{eq}（m^{3}/kg）を固定し、反応速度定数k（kg/m^{3}s）を段階的に変化させながら、実験結果を正確に再現する反応速度定数kを同定する。実験結果のみからLangmuir-Hinshelwood型モデルの定数を同定した際には、チャンバー内の完全混合を仮定したが、現実には基材表面に濃度境界層が形成されており、チャンバー内には不均一の流れ場、濃度場が形成されている。この不均一濃度場形成の影響を考慮したモデル定数の同定手順を図-6に示す。このパラメータ同定には式(10)の単純比例制御(PE制御)をCFD解析に組み込んだ。

\[k^{\text{eq}} = k^{\text{eq}} + \alpha \times (C_{eq,CFD} - C_{eq,EXP}) \] 　　(10)

ここで、C_{eq,CFD}は反応解法中でのCFD解析による小形チャンバー出口濃度、C_{eq,EXP}は目標とする実験による小形チャンバー出口濃度を示す。また、\(\alpha \)は比例定数(ここでは経験定数の意)であり、試行錯誤的に \(\alpha = 0.1 \) の条件で解析を実施した。\(\alpha \)

その他、CFD解析の境界条件ならびに数値解析条件を集約して表-3に示す。

6.3 モデル定数同定結果

実験条件を再現したCFD解析による小形チャンバー内流れ場解析結果を図-7に、実験結果より導かれたモデル定数(\(k, K \))を用いて、給供濃度260μg/m³条件下で式(3)より算出した反応速度を実施した濃度場解析結果を図-8(a)に示す。図-7に示した流れ場の解析結果では、チャンバー内の建材近傍では約0.1m/s以下の風速スケールとなっている。図-8(a)に示した濃度場の解析結果では、建材近傍において排気口周辺より低い濃度場が形成されていることが確認できる。実験結果より濃度を仮定した実験結果の結果を対称したモデル定数(\(k_{eq}=4.85×10^{-11} \text{kg/m}^{3}\text{s} \))を適用して濃度場解析を行った結果、排気口での濃度低下は約35%と実験結果よりも低い濃度低減率となった。これについては述べたとおりチャンバー内を質点系仮定しチャンバー内の不均一

<table>
<thead>
<tr>
<th>表-3 数値解析概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
</tr>
<tr>
<td>Meshes</td>
</tr>
<tr>
<td>Turbulence</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>Scheme</td>
</tr>
<tr>
<td>Inflow</td>
</tr>
<tr>
<td>Boundary</td>
</tr>
<tr>
<td>Outflow</td>
</tr>
<tr>
<td>Contaminant</td>
</tr>
</tbody>
</table>

(1) x=0.125, y-z断面
(2) y=0.125, x-z断面
(3) z=0.125, x-y断面
(a) \(k = 4.85×10^{-11} \text{ kg/m}^{3}\text{s} \)
(b) \(k = 1.78×10^{-10} \text{ kg/m}^{3}\text{s} \)

図-8 濃度分布[μg/m³]
光触媒反応による室内污染物質濃度低減性能の数理モデル化と数値予測（第1報）

性を考慮していないことと、供給濃度によるモデル定数の同定結果を用いているが原因である。そこで、6.2で示した手順に従いKを固定し（K=K_{Exp})、η=0.1の条件において式(10)によりモデル定数kを仮定的に変化させたCFD解析を行い、実験の排気濃度を再現するモデル定数を再同定した結果、k=1.78×10^{-10} kg/m²/sとなった。最終的な濃度場解析結果を図-8(b)に示す。当然のことながらCFD解析を利用してモデルパラメータの再同定を実施した結果を用いることで、実験の排気濃度を完全に再現する結果となる。

7. 考察

光触媒反応のモデル化において、式(5)に示したLangmuir-Hinshelwood型モデルのモデル定数（反応速度定数k [kg/m²/s]と吸着平衡定数K [m³/kg])の同定時には、式(5)を変形した式(6)により同定することになる。この際、チャンバー内が完全混合の定常状態であることを仮定すれば、代表濃度として排気濃度C_{in}を用いることになるが、実験結果での酸化反応を支配するのは建内の排気濃度であり、厳密には供給濃度C_{in}ならびに排気濃度C_{in}とは異なる濃度となる。今回の実験条件では、チャンバー内代表濃度として供給濃度C_{in}と反応速度kを用いたモデル定数の同定を行っている。

実験結果により同定したモデル定数を用いてCFD解析を行うと、酸化反応後の排気濃度C_{in,Exp}に対する結果が得られなかった。これは、チャンバー内の流れ場・濃度場の不均一性を無視し質点系を仮定して同定した定数を用いたことに起因しており、チャンバー内の流れ場・濃度場は理想状態の完全混合状態ではなく、不均一分布を形成されているためと考えられる。即ち、チャンバー内の不均一混合場の影響を考慮せず、質点系を仮定した上で実験結果のみでモデルパラメータを同定することは、酸化反応による濃度低減効果を正しく再現しない危険性がある。本報で示した実験結果とCFD解析を併用するモデル定数同定法は、モデル定数の同定精度に寄与できる有効な手法であると云える。

8. 結語

本報（第1報）は数値流体力学CFDによる室内濃度予測に組み込み可能な光触媒反応モデルを提案した上で、代表的な室内ガス状汚染物質としてトルエンに着目し、独自開発した20L小形チャンバーを用いて濃度低減性能試験ならびにモデルパラメータ同定を行った結果を報告した。特に本報（第1報）で得られた所見を整理する以下の4つ
1) 可視光応答型光触媒担持建材（光触媒建材）を対象とし、チャンバーネガウイルス5.0回、試料面積2.2m²/m³、照度600 lx，温度28℃，相対湿度60%の条件下でトルエン濃度の低減性能試験を行った。その結果、供給濃度70μg/m³～800μg/m³の範囲内で，約0.51～0.88の濃度低減率η[-]となった。
2) 光触媒反応によるトルエン濃度の低減率は供給濃度が高くなるにつれて低下し、供給濃度の約10倍増加に対し濃度低減率は約42%低下し、供給濃度による濃度依存性を確認した。
3) 光触媒反応のモデル化では、Langmuir-Hinshelwood型のモデルを採用し、小形チャンバーの流れ場、濃度場の不均一性を観察した上でチャンバー内を質点系と想定して実験結果からモデルパラメータを同定した。その結果、給気濃度C_{in}と反応速度kを用いて同定した結果、k=4.35×10^{-11} kg/m³s，K=1.16×10^{-6} m³/kgとなった。
4) CFD解析にLangmuir-Hinshelwood型のモデルを導入し、CFD解析に従って、20L小形チャンバー内濃度場・濃度場の不均一性を考慮した上で、反応速度定数k [kg/m³]を同定した。その結果、供給濃度260μg/m³の条件で反応速度定数k=1.78×10^{-10} kg/m³sを得られた。

今回は、Langmuir-Hinshelwood型のモデルを採用し光触媒反応のモデル化を行い、CFD解析に従って、20L小形チャンバー内濃度場・濃度場の不均一性を考慮した上でのモデルパラメータの同定を行った。光触媒反応は濃度のみならず、面積効果や光量にも影響されることにより、室内環境の空気質制御に適用するためには、様々な室内環境要素による光触媒反応への影響を検討する必要がある。
今後、同建物を用いた実験実験を行い、濃度低減効果に及ぼす建材の面積効果を検討する結果を報告する。

謝辞
本研究の一部は科学研究費補助金（課題番号24560717）の助成を受けたものである。

注
1) 本報で使用する小形チャンバーは、ISO 16000-9 ならびにISO 16000-23, ISO 16000-24の試験法に準拠している。また、日本工業規格では、JIS A 1901に規定されている小形チャンバー法に準拠している。本研究で用いたチャンバーの改善点は、チャンバー形状を矩形とすることで、チャンバーの2方向から光照射を可能とした点にある。
2) 本研究では、本実験を含むチャンバーのバックグラウンド吸着分を計測しており、これは±5%程度であることを確認している。この値は、光触媒建材を対象とした場合の濃度低下よりも十分に小さい値であり、バックグラウンド吸着は無視可能と判断した。
3) 実験では反応速度定数kを単位表面積当たりの反応量[kg/m²s]として定義したが、式(2)に示したとおり、元来は単位体積当たりの反応速度定数を示すものであり、
CFD 解析にて Source Term 型の反応モデルとして適用することには合理性がある。本報でのモデル化では壁面に
接する第一セルを仮想反応空間として、その微小空間のみに Source Term を与えるため、k' と k の次元変換には
仮想反応領域（壁面第第一セル）の反応面からの法線方向距離 y について長さスケールとして用いた。
4) 定常解法にて式(10)の P 制御を単純に適用する場合、初期値依存性ならびに反復解法中での扱い方により収束
解に一定の影響が顕れるが、本解析ではこれらを試行錯誤的に決定している。

参考文献
1) 伊藤一秀: 九州における PM2.5 を中心とした越境大気汚染の現状: 空気シンポジウム、2013.8、pp5-10
4) 伊藤一秀: ISO/TC146/SC6 (Indoor Air)における換気が空気質関連標準化の動向：第 5 回空気環境シンポジウム、
2014.03, pp9-12
5) 橋本和仁、藤崎昭: 光触媒のすべて、工業調査会、2004
8) JIS A 1901:2009: 建築材料の揮発性有機化合物 (VOC), ホルムアルデヒド及び他のカルボニル化合物放散測定
方法一小型チャンバー法
9) JIS R 1701-1:2010: ファインセラミックス-光触媒材料の
空気浄化性能試験方法-第 1 部：有機化物及び除気性能
13) Keith J. Laidler, Chemical Kinetics, Harper&Row
14) Hisahiro Einaga, Junnya Tokura, Yasutake Teraoka, Kazuhide Ito: Kinetic Analysis for TiO2-Catalyzed Heterogeneous Photocatalytic Oxidation Processes for Ethylene using Computational Fluid Dynamics: Chemical Engineering Journal, 263, 2015, pp325-335
16) J. Mo, Y. Zhang, Q. Xu et al (2009) Photocatalytic purifica-
17) 橋本和仁、藤崎昭: 酸化チタン光触媒研究動向1991-1997,
シーエムシー出版、2005年
http://www.kjfc.co.jp/eng/business/spraying.php
20) S. B. Kim and Hong SC (2002) Kinetic study for photocata-

(平成 27.4.10 原稿受付)
Small Test Chamber Experiment and Modeling of Photocatalytic Oxidation for CFD Simulation
Part 1 – CFD Modeling of Photocatalytic Oxidation and Numerical Prediction of Concentration Reduction
Performance in Indoors

by Eunsu Lim*, Kiyoshi Yamamoto*, Eisaku Sumiyoshi*, Takahiro Yamaguchi**, Kazuhide Ito***

Key Words: Photocatalytic Oxidation, Langmuir-Hinshelwood Type Kinetics, Small Chamber Experiment, CFD

Synopsis: Indoor air quality affects occupants' health and comfort. Poor indoor environmental conditions and gas-phase/aerosol-phase contaminants in indoors are also identified as one of the causes of illnesses such as asthma and allergy, and known to result in significant loss of productivity because of its adverse effect on health. In recent years, photocatalytic oxidation (PCO) process have attracted attention because they are effective in purification of indoor air polluted with volatile organic compounds (VOCs), especially at low concentration levels. Thus far, TiO₂, one of the photocatalyst bound building materials, has been extensively studied for the oxidation of indoor air pollutants.

The purpose of this research is to establish Numerical Prediction of Concentration Reduction Performance of VOCs indoors. In this study, kinetic studies were carried out on photocatalytic oxidation (PCO) of toluene as VOCs in the gas phase over TiO₂-bound building materials in a 20 L test chamber and computational fluid dynamics (CFD) simulations were performed using the same boundary conditions as the experiments to identify model parameters of the PCO process.

A performance test for evaluating the reduction of toluene concentration was carried out according to the ISO 16000-24 procedure (ISO, 2009) using a rectangular test chamber and a TiO₂-coated building material through a thermal spraying technique. TiO₂ powder was retained on the surface of a material in the absence of any specific binder. Toluene concentration-controlled air was supplied into the chamber via an inlet located at the bottom of the chamber using a precise gas generator. The concentrations of toluene and products in the gas phase were determined using gas chromatography (GC/FID) by collecting samples from the outlet located on the ceiling of the test chamber. In this paper, we show the experimental results of photocatalytic degradation on toluene concentration and the identification result of the kinetic model parameters of the Langmuir–Hinshelwood model on the PCO process in combination with CFD simulations. The Langmuir–Hinshelwood model was applied to the first control volume from the building material surface as a source term (sink term). The error of the reaction rate constant obtained in the experiment was corrected and adjusted through CFD analysis. The reaction rate constant k and Langmuir adsorption constant K were 1.78×10^{-10} kg/m²/s, 1.16×10^6 m³/kg, respectively.

(Received April 10, 2015)