エネルギー監視データを利用した空調設備の異常検知システムの開発と検証

第1報——異常検知システムの全体構成と異常検知手法

河路友也*1 一瀬茂弘*2
成瀬仁*3 柴村篤宏*4

近年,エネルギー計測技術が汎用化され、中小規模の建物においてもエネルギーの見える化が進んでいる。しかしながら、エネルギーデータを適切に分析できる人材の不足等により、データを有効活用する技術が求められている。このような中、建物・設備管理者からは、施設の省エネルギー化の推進や設備機器の更新時期判断のため、エネルギー監視データを活用したいといった要望が強い。そこで、異常検知システムの開発とその活用を目的として、異常検知システムを開発した。本報では、開発した異常検知システムの全体構成とそれを主に駆動する診断内容について報告する。

キーワード：実用・異常検知・エネルギー監視データ・水蓄熱式空調システム・性能劣化

に じ め に

近年、BEMS などの普及により、空調設備のエネルギー消費量などの見える化が進んでいる。しかしながら、BEMS などのデータが十分に活用されているとは言い難く、効率の良いエネルギー監視システムの開発が求められている。エネルギー監視システムは、電力消費の状況や設備の性能を監視し、異常の発見や対策を容易にすることを目指す重要なシステムである。異常検知システムは、異常の発生を早期発見し、対策を迅速に行うことを目的としている。

本論文は、異常検知システムの開発を目的としている。異常検知システムは、異常の発見を早期に行い、対策を迅速に行うことを目的としている。異常検知システムは、異常の発生を早期発見し、対策を迅速に行うことを目的としている。

1. 異常検知システムの全体構成

1.1 異常検知システムに利用するデータ
異常検知システムを利用するデータは、エネルギー監視のために計測・収集されているものであり、電子データと併せて保存されているものであり利用可能である。データの計測時間間隔は10分間を基本としているが、1時間間隔のデータでも対応は可能である。

1.2 異常検知システムの全体構成

図1-1異常検知システムの全体構成を示す。異常検知システムは、Microsoft EXCEL上で動作するソフトウェア（以下「異常検知ソフト」）と称する。この異常検知ソフトがインストールされたパソコンから、前記の計測データにアクセスできるネットワーク環境が構築されていれば、異常検知ソフトの実行は可能である。異常検知に利用する計測データは、1日毎に更新されることを前提とし、基本的には異常検知ソフトも1日毎に実行する仕組みとした。開発された異常検知ソフトは非蓄熱システムと、熱源機が水流量および熱流量の水蓄熱システムの3種類に対応可能であるが、物件登録シートの内容を物件ごとに変更することで、各項目に介入されている熱源機器や制御内容などに応じることができる。物件登録シートには、熱源機の定格値および外気条件によって変化する能力特性の他、計測データの登録の可能性も考慮することで、エネルギー監視データに対するの利用可能性を高めている。異常判定結果にとっては、異常の有無と共に、その度合を「高」、「中」、「低」の3段階で表示し、異常原因の解明に有用と考えられる各種グラフが自動作成される。異常検知ソフトでは、突発的な異常の他、機器の経年劣化によるエネルギー消費量増大を防止することも目的としているため、年別の出力により経年変化も確認可能となっている。

2. 異常検知システムにおける診断項目

本章では開発した異常検知システムで診断の対象とする熱源機・水送熱設備・水蓄熱槽の診断項目を機器別に示す。

2.1 熱源機の診断項目

表1-1熱源機の診断項目を示す。機器単体の熱出力（以下「出力」と称する）・COPのように機器単体の劣化などの他に、空調機機器の冷温による定時外の熱源機運転発生の有無、設置されている熱源機容量の適正性などの判断も行う。

水蓄熱システムと非蓄熱システムに設定された熱源機では、運転時間や制御方法などが異なるため、システムによって診断可能な項目は異なっている。冷却水温度も熱源機の効率を考える上では重要であるため、診断項目に加えている。なお、熱源機の出力・COPの算出については、計測データの選別が必要となる。データ選別手法は第3章で詳述する。

表2-1水送熱設備の診断項目

表2-2水蓄熱槽の診断項目
2.2 水冷送信設備の診断項目

表-2に水冷送信設備の診断項目を示す。一次ポンプについては、定流量システムと変流量システムでは、診断項目が異なる。定流量システムにおいては、流量と電力の関係を監視することでポンプの効率を表する診断を行うが、変流量システムでは、熱源水の消費が設定値に制限されているかについても診断対象としている。

二次ポンプについては、一次ポンプに入力する在庫温度に伴い判断する流量の適正性や台数制御の適正性の診断を行う。

2.3 水蓄熱槽の診断項目

表-3に水蓄熱槽関係の診断項目を示す。水蓄熱システムでは、蓄熱槽が安定に利用されているかを診断するために、槽内水温の目標値、蓄熱完了時、放熱完了時などの温度を設定値として、診断対象としている。

3. 診断用データ選別手法と診断手法・事例

本章では、2章で述べた熱源機・水冷送信設備・水蓄熱槽の主な診断項目に関する診断手法等を示す。

3.1 熱源機のデータ選別と診断方法

(1) データ選別手法

熱源機の能力・消費エネルギー量などは、各メーカーの能力試験結果がカタログや技術資料として公開されるものであるが、現場においては能力試験のように一定条件で性能が得られるとは限らない。このため、単にBEMSデータから求められる時間別消費エネルギーからCAPEを算出しても、安定的なデータとはならない場合があり、現在の性能値を正確に特定することは困難と考えられる。しかしながら、空調用熱源機のエネルギー消費量は変化させていて、今後はこの状況の性能値の問題に対する対策が必要である。

以上より、通常の運転データから安定状態を抽出し、そのデータから求めた熱源機出力とCAPEを用いて検討を行うこととした。安定状態を判定する要素として、熱源機性能への影響を考慮して、出力、出入口水温、消費エネルギーの3つとし、この3要素について安定性を検討し、その検討を用いて診断を行うこととした。安定状態を判定する要素として、熱源機性能への影響を考慮して、出力、出入口水温、消費エネルギーの3つとして、この3要素について変動幅の検討を行った結果、変動幅の±3%、変動時間30分（10分間隔データで4個連続）のものを診断対象とし、これにより決定した。なお、JISに定める能力試験では、定常状態に達した後のデータを用いていると定めがあり、定常状態とは、流量は±5%以内、出入口水温は冷暖房1℃±0.3℃で対応的に安定する状態となっている。具体的な検討時間の指定はなく連続的にこの状態が維持されればよいか、出入口水温許容変動幅の0.3℃は7℃に対しては4%程度であり、今回設定した±3%の原因はJISの範囲内となり妥当な条件設定と考えられる。一方、実際の運転においては、冷暖房温度・出力・消費電力は一定ではなく変動する。その中で安定データを選別する必要があるため、図-2に示す方法で診断対象データを選別している。

図-2を通じて診断用データ①では、8:30の値を基準として9:20までの値は±3%以内においているため6個のデータが診断対象として採用される。9:40からのデータは10:10の値が範囲外となるため診断データは削除される。
用データとはしない。このような条件を前記の 3 要素全て満たした場合のみ診断用データとする。この作業により、過渡状態の不安定となるデータを排除することができる。

図-3 には、空冷ヒートポンプの夏期（8月）の実運転データから、前記 3 要素の条件を全て満たすデータによって外気温と COP の関係を示す。変動幅は ±20% と ±3% で図を分けており、それぞれ出口水温別に分類している。図-4 と図-5 に、図-3で示されたデータを用いた近似直線および近似式・COP 値を示す。いずれの変動条件においても、出口水温が上昇するほど COP が向上する傾向は確認できるが、変動幅 ±3% の方が COP 値は大きく、データの信頼性が向上することができ確認でき、外気温と COP の関係をより正確に表現できると考えられる。

(2) 診断手法

熱源機については、出力と COP に関して診断を行うが、実運転における外気条件と出口水温条件は、定格値の条件とは異なるため単純な比較はできない。そこで、物件記録データに登録されている熱源機特性値と診断用データの出口水温、外気条件により算出した能力と COP を定格値補正能力、定格値補正 COP と称して、能力達成率と COP 達成率を下記のように定義した。この達成率を 10 分間隔のデータで算出している。

能力達成率 [%] = 実績出力 [kW] / 定格値補正能力 [kW] × 100
COP 達成率 [%] = 実績 COP / 定格値補正 COP × 100

このように達成率を用いることで、定格条件では異なる出口水温、外気条件下においても評価が可能である。COP は熱源の運転負荷率（定格能力に対する、単位時間あたりの出力の割合）の影響も受け、一般的には運転負荷率の低下に伴い COP は低下する。蓄熱システムでは基本的には全負荷運転となるため運転負荷率による影響はないと考えられる。蓄熱システムの場合はメカニカル負荷率と COP の関係を示す詳細な資料があれば明確であるが、実際には入手が困難であるため、蓄熱システムの場合も運転負荷率による COP の補正は行っていない。蓄熱システムの熱源機能力達成率は運転負荷率と考えることができるため、実績としての運転負荷率と COP の関係については診断対象としている。図-6 に蓄熱システムの熱源機、図-7 に非蓄熱システムの熱源機について 10 分の 1 ケ月間の実データを用いた能力・COP 達成率の算出例を示す。ここでは、10 分毎に算出した達成率の平均値で示している。図-6 に示すように、能力・COP 達成率はほぼ安定しており、熱源性能に変化が生じた場合には検知が可能と考えられる。一方、図-7 の非蓄熱システムでは、各時間の熱負荷に応じて熱源出力が変化するため、達成率が低下することを想定することができない。前記の通り非蓄熱システムの熱源機能力達成率は、運転負荷率と同義であり、図-7 で示すように能
データで算出した達成率の結果から基準値を決定している。
また、新築物件の場合には、暖房設備それぞれの最初の1ヶ月程度のデータを基に決定することとした。一方、しきい値は、基準値に対しての変化割合によって設定するため、熱源機
であれば全て共通の値を設定することにしている。今後、基準値やしきい値については、異常検知システムの試運転や実運用の結果によって、順次見直しが必要と考えている。

3.2 水冷送設備のデータ選別と診断手法

(1) データ選別手法

診断対象とするポンプは、一次ポンプと二次ポンプである。一次ポンプの診断用データは、前記の熱源機診断用データとして選別された同時刻のデータとなる。二次ポンプについては、近年は変流量システムが増加しているため、熱源機と同様に流量の安定度を判定基準として診断用データを選別することはできない。診断用データは挙動が不安定になると考えられる運転開始直後のデータを除くののみで、その他の運転データは診断に利用することとしている。

(2) 診断手法

一次ポンプは、定流量と変流量があるため、診断項目・手法が異なっている。変流量では、基本的には流量と消費電力は一定となるため、その変動の有無によって診断を実施する。変流量では、流量と消費電力の関係により診断を行う。図-9に変流量一次ポンプの流量と消費電力の関係を示す。冷房運転時、暖房運転時のいずれにおいても、流量と消費電力の相関関係は明らかに現れているため、この関係の変動の有無によって診断を行う。

二次ポンプにおいても流量と消費電力の関係を用いた診断を行う。また、台数制御が行われている物件で、ポンプごとの消費電力等、運転台数が判別可能なデータが計測されている場合には、台数制御の診断が可能である。

(3) 診断基準値としきい値

変流量の一次ポンプの流量については、定格値あるいは実際の現場での設定値が基準値となる。変流量一次ポンプおよび二次ポンプでは、流量と消費電力から求めた近似式により基準値を決定する。ポンプ制御は、送水圧の制御方法等が物件毎に異なることから、事前に検知台数を決めるため、現場の運用状況に合わせて近似式は直線及び曲線で登録可能です。しかし、基準値作成用データが設計思想から逸脱した状態のものでは意味がないため、運転調整等が行われた後のデータであることが前提となる。図-10に二次ポンプの基準値設定例を示す。直線・曲線近似式の作成後、分布データの上端に基準値が設定されるように消費電力が大きくなる方向にスライドさせたものを基準値としている。図-10の例では、冷水ポンプの場合には直線近似式、温水ポンプの場合には曲線近似式となっている。冷水ポンプもインターバル制御のため、
条件 a) 始端槽側 2 槽に温度の逆転現象が生じていない。条件 b) 条件 a) を満たすデータの中で、槽容積加熱平均水温が最も高い時間。

ここで、放熱完了時の条件 a) については、放熱完了後に熱源機が起動した場合に、起動直後に熱源機入力三方向の動作遅れにより入口水温が高くなり、出口水温も高温度となる。これにより、始端槽の水温が上昇し、結果としてこの時のデータが放熱完了時として抽出されてしまうことがあって、この条件を追加している。

(2) 診断手法

a) 槽内水温

水蓄熱式空調システムにおいて、槽内水温は以下の条件が満たされる必要がある。

1) 放熱完了時

始端槽水温：空調機入口水温設計値より低溫

終端槽水温：熱源機入口水温設計値に近い水温（但し、中間期など診断が必要な場合は除く）

2) 放熱完了時

始端槽水温：空調機入口水温設計値より 2℃程度以下

終端槽水温：空調機出口水温設計値以上

条件が満たされない場合異常と判断されるが、例えば、放熱完了時に始端槽水温が高溫となる場合では、熱源の能力達成率や出口水温で異常が検出されていないか等、関連設備の状況を自動で確認する仕組みになっている。

このデータは8月であるため満載が要求され、終端槽水温も熱源機入口水温設計値程度になっていることから、蓄熱運転は良好であると判断できる。放熱完了時の始端槽水温はそして冷媒設計値から 2〜3℃程度の上昇で留まており、放熱や熱源機への送水温度上昇による室内温度環境の悪化は無いと判断できる。また、終端槽水温は高冷媒設計値（空調機出口水温設計値）以上となっており、二次側での利用温度差も、ほぼ設計値に近くなっていると判断できるため、この月のデータからは異常は検出されない結果となる。

b) 熱源機夜間移行率

蓄熱式空調システムの大きなメリットとして夜間電力利用によるランニングコストの削減がある。このメリットを確実に享受するには、夜間移行率を高め維持する必要がある。夜間移行率については、昼夜間別の熱源機消費電力量の積算値から算出し、その値により診断を行っている。

図-11 に診断例を示す。19日目には、50%近い夜間移行率であったが、25日以降は長期消費電力が小さくなるにも関わらず夜間移行率が低下しているため、運転制御上、何らかの異常が発生していると診断することになる。

蓄熱率・蓄熱槽利用率

蓄熱効率は、熱源機が蓄熱槽に投入した熱量に対して実際に蓄熱槽から取り出すことができた熱量の割合である。一方、蓄熱槽効率は蓄熱槽容量すべてが使用目的温度差で利用できた場合の熱量に対して実際に蓄熱槽から取り出すことができた熱量である。蓄熱槽効率は蓄熱槽利用率と称されるが、異常検知ソフトでは蓄熱槽利用率を表記している。ここでは実際に蓄熱槽から取り出せることができた熱量は、前述の条件で判定した蓄熱完了時と放熱完了時の各センサーの水温差に分担水温を乗じることで求める。

図-12 に蓄熱効率と蓄熱槽利用率の診断例を示す。蓄熱効率は、月曜日には日曜日に残蓄熱がある場合に月曜日の朝にかけての蓄熱運転が短くなる影響により 100%を超える状況が発生するため、休日明けのデータを除いて診断する必要がある。蓄熱槽利用率は、負荷が小さくなれば当然低下するため、冷水槽は7〜9月、温水槽は12〜2月までのデータを診断対象としている。

4. まとめ

本報では、エネルギー監視データを利用した空調設備の異常検知システムについて、全体構成と異常検知手法の内容について示した。以下にまとめると。

1) 開発した異常検知システムの全体構成を示した。異常検知ソフト自体は3種類のもので、物件登録シートの入力内容を変えることで各種システム、エネルギー
Development and Verification of Newly Developed Fault Detection System for Heat Source Supply System Using Energy Monitoring Data

Part1—Fault Detection System Outline and Its Fault Detection Algorithm

by Tomoya KAWAJI*1, Shigehiro ICHINOSE*2, Hitoshi NARUSE*3 and Atsuhiro SHIBATA*4

Key Words: Measurement, Fault Detection, Energy Monitoring Data, HVAC System with Water Thermal Storage, Performance Degradation

Synopsis: The visualization of energy consumption in small and medium sized buildings has been spreading rapidly in recent years owing to generalization and reduction in the price of energy measurement equipment. However, utilization of the stored data for daily maintenance has not been sufficient so far because of lack of users skilled in data analysis techniques. On the other hand, the demand from building administrators who seek useful information on utilization of stored data has been increasing for further energy conservation and preventive maintenance of HVAC component. The purpose of this study is to develop a fault detection system that can detect faults in air-conditioning equipment and provide useful information to building administrators who seek to rationalize daily operation management to achieve their goals. Utilization of this system results in not only energy waste prevention but also appropriate renewal time judgement of the HVAC system. In this paper, a fault detection system for heat source supply system is outlined and its fault detection algorithms are presented.

(Received June 10, 2015)