放射併用型冷風吹き出しパーソナルユニットを用いた空調システムに関する研究
—パーソナルユニット実物模型を用いたパネル温度・吹き出し気流分布の検討

〇安沢智明（大阪大学） 相良和伸（大阪大学） 山中俊夫（大阪大学）
甲谷寿史（大阪大学） 稲口祥明（竹中工務店） 上羽勇敬（大阪大学）

1. はじめに
既報1,2)において、空調の吹き出し冷風を放射パネルに吹き付ける方式の放射冷房の省エネルギー性を確認した。本報では、その具体的なシステムの設計を目的として、パネル内部に冷風を通じた後吹き出し方式に着目し、実物大模型を用いた実験を行うと共に、パネル温度分布等の予測計算を行い、測定値との比較を行った結果について報告する。

2. パーソナルユニットの概要
図1に吹き出し空気を利用した放射冷房方式のパーソナルユニットの構造を示す。放射パネルとして機能する一枚のアルミパネル間に低温空気を流すことでパネルを冷却すると同時に、パネル上部から吹き出される空気をコアドドラフトを感じない程度に昇温させることができる。この方式はタスク・アンビエント空調のタスクユニットとして位置づけられ、その特徴はパネルをローパーティションに組込むことで人体に対する形態係数を大きく選ることができる。共に、在室者ごとに吹き出し口を開けることによるパーソナルな環境制御が在室者の快適性に寄与することである。また、空気質の観点からも新鮮外気を居住者に効率的に届けることができる方式である。

3. 実験概要
図1に示すパーソナルユニットの実寸大模型を製作し、大阪大学内の人工環境実験室において実験を行った。水平層流型人工気候室内における実験装置の配置図を図2に示す。放射パネル表面は放射率0.94の黒体塗料にて塗装を施した。放射パネル間距離

図1 吹き出し空気を利用した放射冷房システムの実験装置
図2 実験装置の配置図
離 PH、吹込み空気温度（実験ではチャンバー内温度としている）T_c、吹込み流量Mの3つを実験パラメータとして、表1のように設定した条件下において実験室内を26℃、相対湿度50％に保ち、定常状態に達したことを確認した後、図3に示す測定点で放射パネル内空気温度及び放射パネル表面温度をサンプリング間隔30秒で測定した。なお同時に室室内空気温度、壁面温度も測定している。

4. 実験結果及び考察

図4～図6に内部空気温度分布及びパネル温度分布と実験パラメータとの関係を示す。この結果については、放射パネルの水平方向の分布がないことが確認できたのでパネル中央断面について示す。パネル間距離が異なる条件下（図4）では最も狭いPH=54mmで内部空気温度が高くなっているが、PH=150mmもほぼ同程度の空気温度になっている。放射パネル温度分布は上部ほど温度が高い方がパネル間距離による差違は非常に小さいことがわかる。吹込み流量が異なる条件下（図5）では内部空気、放射パネル温度分布共に流量が小さくなると高くなる傾向がある。内部空気のパネルからの取得熱量が同じ場合、流量が大きいほど温度上昇が小さくなるのは当然であるが、流量の増大によって対流熱伝達率も大きくなるはずであり、この結果は対流熱伝達率の増大が相対的に小さいことを意味していると考えることができる。吹込み温度T_cが変化する場合（図6）、T_cが高くなるほど内部空気温度、パネル温度共に高くなり、またその鉛直温度分布は小さくなっている。これは空気温度が高くなりパネルから伝達される熱量

<table>
<thead>
<tr>
<th>表1 実験条件一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH=54</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

吹込み空気温度T_c [℃] パネル間距離PH [mm] 吹込み流量M [m^3/h]
が小さくなるためである。また、放射パネルの空気を加熱する能力、あるいは放射面を冷却する能力を検討する指標として、空気が吹き込まれてから吹き出されるまでに取得した熱量及び放射パネル表面の面積平均温度を求めて、吹き込み温度との関係を図7、図8に示す。図7に関してパネル間距離が54mmで最も低い値を示していることから、パネル間距離が小さい方が概して冷却性能が高いと言える。図8に関して、内部空気取得熱量はパネル間距離が150mmで最も大きくなっているが、図7ではそれほどパネル温度が低くなっている。これはパネル間距離が大きくなることによって放射パネル側壁から流入する熱量が大きくなるためであると考えられる。

5. 計算概要

本章では、放射パネル内の空気温度分布、パネル表面温度分布を予測する簡易計算モデルの作成を行う。モデル化に当たって、放射パネル内の空気温度、パネルの表面温度の水平方向の温度分布はなく、放射パネルを鉛直方向にブロック分割し、単体ブロック内の空気層や放射パネルに与えられる熱流は瞬時にブロック内に均一に拡散すると仮定する。放射パネル内での放射による熱移動は微少であると考え、無視するものとした。

図9において内部空気温度及び放射パネルに関して熱バランス式を立てる。図9に示すそれぞれの熱流は、パネル内部について放射パネルから空気への熱伝達q_{win}、パネル側面からの貫流による熱伝達q_{w}が考えられる。パネル外部に関しては、室空気から放射パネルへの熱伝達q_{wout}、室内壁面などから放射パネルへの放射熱伝達q_{r}が存在する。パネル板内部では伝導による熱移動q_{d}が考えられる。強制対流場合での熱伝達率の近似式31, 41, 61など（表2）、各現象に対応した熱伝達率を与えることにより各熱流=係数×温度差の形で与えことができ、これらを2つの熱バランス式に代入することで、放射パネル下端から連続的に内部空気温度とパネル温度を計算できる。
6. 計算結果と実験結果の比較

図10～図12にパネル内部空気温度分布及びパネル温度分布についての計算結果と実験結果を比較して示す。概して、計算値は内部空気温度では実験値より低い値を、放射パネル温度では実験値より高い値を示す傾向があるが、両者共に比較的よく一致していると言える。吹き込み空気温度が変化した場合（図10）、内部空気温度分布、放射パネル温度分布共に上昇傾向にあり、計算値は実験値と非常によく一致している。吹き込み流量が変化した場合（図11）、流量が小さくなると計算値と実験値との誤差が大きくなっている。パネル間距離を変化させた場合（図12）、パネル間距離が大きくなると計算値と実験値の誤差が大きくなっている。この要因は放射パネル内外の対流熱伝達率にあると考えられるものの、これらと放射パネル間距離との関係の特定は現段階では困難である。

7. まとめ

本報では、吹き出し冷風を利用した放射冷房方式の実物大模型を用いた実験によって、吹き込み流量、吹き込み温度、パネル間距離と内部空気温度分布、パネル表面温度分布との関係を把握した。又、内部空気温、パネル表面温度の予測計算結果と実験値が比較的良好一致することを確認した。今後は、この空調システムの設計法を提示することを目的として、吹き出し気流性状の把握及びその予測手法の確立、また、PMV等の体感指標の検討、及び被験者実験による快適性の検討、吹き出し冷風を利用した放射パネル設計のフローの提案を行う所存である。

参考文献
1) 安沢智明、山中俊夫、甲谷寿史、樋口祥明：「吹き出し冷風を利用した放射冷房方式に関する研究」、日本建築学会大会学術講演概要集D2、pp.1071-1072、2003.9
2) 安沢智明、山中俊夫、甲谷寿史、樋口祥明：「吹き出し冷風を利用した放射冷房方式の省エネルギー性に関する検討」、日本建築学会近畿支部研究報告集環境系、第43号、pp.193-196、2003.6
3) 甲賀好信：「伝熱概論」、実験堂、1964
4) 塚本武助、佐藤健：「伝熱学概論」、文献社、1956
5) 相原利雄：「伝熱工学」、楽華房、1994