A−46 ブラインドによる夏季省エネルギー効果に関する検討
その1 外付けブラインドによる省エネルギー効果

正会員 ○石原修 (熊本大学)
正会員 張晴原 (熊本大学)

1. はじめに

夏季において窓からの日射熱取得は冷房負荷の大きな割合を占めており、日射遮蔽は夏季における最も有効な省エネルギー手法の一つである。現在一般的に使用されている内付けブラインドは、スラットが受けた日射の一部を対流熱として室内に拡散するため、日射遮蔽係数は0.6前後になっている。一方、外付けブラインドは対流熱を室外側に放出するために、効果的な日射遮蔽が期待できる。

本研究では外付けブラインドによる冷房エネルギー軽減効果を明らかにすることを目的とする。まず、「日射(陰)に対する日射遮蔽(蔽)係数簡易試験方法、JIS A 1422−1982」を参考にして、外付けブラインドの日射遮蔽係数試験装置を作成し、外付けブラインドの日射遮蔽係数を実験的に求めた。次に、実験で得られた結果を基に、空調負荷計算プログラムHASP/A C L D/8001を用いて、内付けブラインドや外付けブラインドを用いた場合の建物の除去熱量を比較し、外付けブラインドによる省エネルギー効果について検討した。

2. 実験概要と結果

熊本大学自然科学研究科研究棟屋上に設置した自動追尾式のターンテーブルの上に、日射遮蔽係数試験装置を作成して、各種の測定を行った。得られた測定データを用いて、JIS A 1422−1982を参考にして日射遮蔽係数を算出した。測定は1991年8月～11月において2種類の試験体で実施した。使用した試験体は、A社製の手動式外付けブラインドとB社製の電動式の外付けブラインドであり、その断面を図1に示す。

測定期間はA社製ブラインドが8月～9月であり、B社製が10月～11月初旬である。それぞれスラット角度を30°から90°までで15°間隔で調整し、晴天日の太陽高度が10°～40°の範囲で10°間隔で測定した(スラット角度とは、ガラス面とスラットのなす角度とする)。測定・解析には、丁度所定の太陽高度になる時刻のデータとその3分前及び3分後の3つのデータを使用し、それぞれの太陽高度毎に午前と午後について計算し、日射遮蔽係数はそれらの平均値を求めた。

二つの計星体について、スラット角と太陽高度別に整理した結果を、表1と表2に示す。

A社製のブラインドでは、スラット角開か

Discussion on energy savings by using blinds in summer
Part 1 Energy savings of exterior blinds

ISHIHARA osamu et al.
表-1 A社製ブラインドの日射遮蔽性能

<table>
<thead>
<tr>
<th>サラ角度</th>
<th>太陽高度</th>
<th>ふく射遮蔽係数</th>
<th>対流遮蔽係数</th>
<th>(全)日射遮蔽係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>10°</td>
<td>0.11</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>0.09</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.10</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td>0.10</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>45°</td>
<td>10°</td>
<td>0.08</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>0.10</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.10</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td>0.11</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td>60°</td>
<td>10°</td>
<td>0.11</td>
<td>0.01</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>0.11</td>
<td>0.03</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.13</td>
<td>0.02</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td>0.14</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td>75°</td>
<td>10°</td>
<td>0.24</td>
<td>0.04</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>0.12</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.14</td>
<td>0.03</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td>0.17</td>
<td>0.05</td>
<td>0.22</td>
</tr>
<tr>
<td>90°</td>
<td>10°</td>
<td>0.45</td>
<td>0.10</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>0.40</td>
<td>0.10</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.28</td>
<td>0.07</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td>0.22</td>
<td>0.04</td>
<td>0.26</td>
</tr>
</tbody>
</table>

3. 外付けブラインドの省エネルギー効果

図-2に示す実験結果を基に、空調負荷計算プログラムHASP/ACLD/001を利用して、窓における日射遮蔽装置として内付けブラインドを使用した場合と、外付けブラインド使用の場合の冷房時除去熱量を計算し、ガラスのみの場合と比較した。ここで、A社製ブラインドのみについて検討を行う。

計算対象は東京に建つ事務所ビルを想定し、

![Shading coefficient vs Solar altitude graph](image)

図-2 スラット角度を最適に調整した場合の日射遮蔽係数
計算に用いた建物モデル平面を図-3と図-4に示す。空調時のゾーニングは東面、南面、西面、北面の各ペリメーターゾーンとインテリアゾーンに分け、インテリアゾーンは計算の対象から外している。在室人員密度を0.18人/㎡とし、照明負荷を20W/㎡、各ゾーンの器具発熱を2,000Kcal/hとした。内付けブラインドの日射遮蔽係数は常数として0.64を与えているが、窓面の日射量が200Kcal/㎡h以下の時間帯においては使用しないことにした。外付けブラインドの日射遮蔽係数は図-2に示す値を用い、太陽高度にしたがって日射遮蔽係数が変化するものと考えた。

図-3 計算に用いた事務所ビル平面図
図-4 ペリメーター断面図

図-5 ブラインドなし、内付けブラインドおよび外付けブラインドを用いた場合のペリメーターゾーンの除去熱量経時変化の比較
図の気象条件として東京の標準気象データを用い、計算対象となる期間は6月〜10月とした。8月10日を典型的な夏日と考え、その日の開口率の東ゾーンと西ゾーンの単位面積の除熱量の経時変化をそれぞれ図-5の（a）と（b）に示す。ベリメーター東ゾーンにおいては、ガラスのみの場合、8時から9時頃にかけて冷房時の除熱量が大きく、外付けブラインドを用いた場合の1.5〜2.0倍になっている。
内付けブラインドを用いた場合の除熱量は両者の間にある。図-5（b）に示すように、
ベリメーター東ゾーンにおいては、朝から14時頃にかけて遮蔽装置による除熱量の違いは顕著ではない。しかし15〜16時においては、外付けブラインドを用いた場合の除熱量はガラスのみの場合の約60％になっており、内付けブラインドを使用した場合の値はガラスのみ状態に近い。2つのゾーンでは、外付けブラインドを使用することによって除熱量を軽減できるだけでなく、空調装置のピーク負荷も大幅に減少させることができる大きなメリットであろう。ベリメーター南ゾーンとベリメーター北ゾーンでは窓面における遮蔽物による除熱量の違いが小さく、日変化も小さかった。

次に、各ベリメーター-ゾーンの床面積に対する窓面積（開口面積比）をベリメーターにし、6月〜10月における冷房による除熱量を計算し、その結果を図-6（a）と（b）に示す。
図-6によれば、ベリメーター-ゾーンの東面と西面では、内付けブラインドに比べ、開口面積比が10％、30％、50％のとき、外付けブラインドを使用した場合の除熱量はそれぞれ内付けブラインドのその値の約90％、85％、80％となっている。言い替えれば、外付けブラインドを使用することによって、10％〜20％の省エネルギー効果が期待できる。

図-6 ブラインドなし、内付けブラインド及び外付けブラインドを用いた場合のベリメーター-ゾーンの年間除熱量の比較

4. 結論

本研究では実験およびシミュレーションによって、外付けブラインドの省エネルギー効果を明らかにした。今後、内付けブラインドについてもストラット角度や太陽高度別の日射遮蔽係数を求め、それぞれの省エネルギー効果の検討を行いたい。

謝辞実験用の供試体製作にご協力頂いた（株）建築協並びに立川ブラインドの関係各位に感謝致します。実験および論文作成に熊本大学生田義子先生、熊本女子大卒論生緒田秀子、河島佳代子、古川英子氏のご協力を得た。記して謝意を表します。参考文献1）木村、宿谷他：窓面日除けの日射遮蔽係数の簡易測定法について（第2）（その3）日本建築学会大会講演集、1981年 2）JIS A1422-1982 日除けの日射遮蔽係数簡易試験方法 3）松尾、横山浩一、石野久弥、川元昭吾：空調設備の活動負荷計算入門、日本建築学会協会