A-46

SI住宅における排水ヘッダ方式の性能評価に関する研究
（第9報　汚水・雜排水の合流影響評価の検討）
Study on Drainage Performance Evaluation and Design Method of Horizontal
Drainage Pipe System for SI Housing
（Part9.Evaluation of Combined drainage for Dirty water & domestic water load Test）

学生会員　繁田 和拡（関東学院大学）　正会員　大塚 雅之（関東学院大学）
学生会員　南 裕介（関東学院大学）
Kazuhiro SHIGETA*1 Masayuki OTSUKA*1 Yusuke MINAMI*1
Kanto-Gakuen University*1

This study is aimed a grasp at the technique of performance evaluation and design, that is method of the horizontal fixture drain branch pipe system with drainage header piping applied to dwelling of SI housing. This paper focuses on performance evaluation of combined drainage for dirty water & domestic water on that system. The authors described affected by combined drainage test an aspect of the pressure variation in the horizontal pipe, the variation of water level of the trap and characteristic of back flow as an evaluation index.

1. はじめに

本報は、SI住宅に設置する排水横管システムの性能評価手法と設計手法を検討することを目的とした実験研究の続報である。前報1では、主に配管長さが比較的短い雑排水系統の配管で合流影響評価を行い、トラップへの逆流水の侵入の有無について検討した。しかし、図1(1)に示すように実際のSI住宅に適用する排水横管システムでは、汚水・雑排水系統の配管を排水立て管まで交差させることなく接続するために、汚水配管を大幅に迂回させるケースも多く見られる。本報では、汚水系を図1(2)のように排水ヘッダ上で合流させることで配管経路を短縮化させ、VE効果も高いシステムを提案し、その性能評価と設計手法を検討することを目的とする。

2. 実験概要

図2に本実験の供試配管システムを示す。同図には性能評価項目となる管内圧力変動P、管内水位変動H、トラップ水位変動H0の測定位置を示す。実験を行う配管形状は、表1に示す4種とする。大便器の配管長さは排水立て管から4[m]を基準にし、その時の排水ヘッダからの下流配管長さL3が同表(1)のようにストレートの場合（以下、基準ストレート・WC配管）、同表(2)のように局部抵抗として一箇所曲りを設けた場合（以下、基準曲り・WC配管）、ストレート配管時に大便器配管長さを1[m]ずつ延長した場合最大8[m]（以下、基準ストレート延長・WC配管）、(4)のように大便器配管（上流部）に一箇所曲がりを4[m]位置に設けた場合（以下、基準ストレート・WC配管）を対象とし、流速を変化させた際の排水性能を検討した。

表1 排水負荷システム

<table>
<thead>
<tr>
<th>配管タイプ</th>
<th>配管形状</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)基準ストレート配管</td>
<td></td>
</tr>
<tr>
<td>(2)基準曲り配管</td>
<td></td>
</tr>
<tr>
<td>(3)基準ストレート延長配管(E)</td>
<td></td>
</tr>
<tr>
<td>(4)基準ストレート配管(曲り有)</td>
<td></td>
</tr>
</tbody>
</table>

図1 分配管システム

(1) 分流配管システム (2) 合流配管システム

図2 供試配管システム

表1 排水負荷システム

(1)基準ストレート配管
(2)基準曲り配管
(3)基準ストレート延長配管(E)
(4)基準ストレート配管(曲り有)
曲り配管）について実験を行う。また、配管は透明塩ビ製とし、こう配は1/100とした。供試衛生器具は最上流側から順に大便器、合流所（又は洗面器）、浴槽（又は洗濯機）を設置した。表2に供試大便器の接続排水横管長さが0[m]の状態の器具排水特性値も示した。また、配管システムの中間の分岐部に、供試トラップとし、前報までに知事より、表3に示す浴槽トラップを設置し逆流の侵入の有無を確認する。排水器具の浴槽はバリアフライー型と従来型について実験を行い、前者は従来型浴槽に抵抗板を設け器具排水特性を再現した。大便器は排水ヘッドの最上流側に洗い落し式、超節水式、サイホンセット式を交互に交換し接続する。その他の衛生器具は前報と同じとする。基準ストレートWC配管における排水負荷の組み合わせを図4に示す。合流させる器具数は大便器を含め3〜3器具とした。この時の排水タイムラグは前報と同様に各単独排水における瞬時最大排水流量（qmaxの発生時間が一致するように合流させる。また、合流排水時にトラップへ逆流の侵入が有する場合、回避策として1）接続配管長さLpを延長する方法[以下、延長配管]、配管長さLpを持ち上げる方法（以下、持ち上げ配管）について実験しそれぞれ検討する。また、排水ヘッドは主管部の径が75A、100Aの2種類を使用し実験を行い、それぞれ比較検討する。

3. 測定項目及び方法
本実験の測定項目は前報と同様に、管内圧力変動、トラップ封水変動及び封水損失、トラップへの逆流の有無、先端流速、搬送性能について測定する。この中で、搬送性能についてはBL従来基準、BL新基準に従い計数汚物の挿入特性を確認する。代用汚物や代数の排出状態より〇完全搬送、△一時滞留完全搬送、×排水完了後も完全停滞の3段階で評価する。また、その他の性能は前報と同様とする。

4. 結果及び考察
(1) 基本排水実験
1）管内圧力変動・トラップ封水変動
図3に洗濯機を含む排水で最も排水性能に厳しい条件となった実験No.4における管内圧力変動の大観最大・最小値（Paex, Pmin）を示す。供試大便器は表2に示す3つとして、図2の配管システムにおいて、75A排水ヘッドを用いた場合、実験No.1, 2, 4, 6では判定基準値以内におさまったが、器具数3の実験No.4ではサイホンセット式の場合に-352.7〜411.1[Pa]となり判定基準値を超えた。この後、管径を100Aとした場合、表1の各排水負荷システムにおいて30〜20[Pa]以内におまり、正压30[Pa]、負圧320[Pa]程度に緩和した。また、浴槽を含む実験No.11の合流排水でも75A排水ヘッドを用いた場合に258.8〜578.2[Pa]であったが100Aでは384.1〜25.1[Pa]におまり、判定値以内であることが確認できた。封水変動及び封水損失の最大値・最小値は図4に示す。75A排水ヘッドを用いた場合、封水変動が8.7〜42.7[mm]となるが、それに対しても100Aでは19.3〜15.2[mm]程度となり16.9[mm]程度緩和された。封水損失においても75Aの3.4〜4.5%に対して100Aでは0〜2.8[mm]程度となり1.7[mm]程度緩和され、この2項目の評価では75A排水ヘッドには限界があり100A排水ヘッドの方が有利であることが確認された。
2）搬送性能
表5に表1に示す排水負荷システムの搬送性能実験の結果を示す。ここでは器具数3の排水負荷として厳しい条件であったWHM30WCの合流排水の結果を主に示した。75A排水ヘッドでは器具数2のB4WC(WD)の排水で評価は×であり、排水ヘッドの下流側の位置に排水される従来浴槽からの排水に押し付けられた。WHM30HC(WD)で一時滞留が検出され、100A排水分ヘッドに管径を大きくすることで、全パターンにおいて完全搬送ができ、ほぼ搬送性能は確認できた。
3）トラップへの逆流の有無
図5は大便器と排水立て管延長の距離（2大便器配管全長）と貯留部付近水位の関係を示したものです。貯留部付近水位は、表2の浴槽トラップを設置し、前報
で示した方法で算出した。75A 排水ヘッダでは基準ストレート WC 配管の実験 No.3（大便器: サイホンセット式）の合流排水で図 2 に示す Hg が 27.9 [mm] となり 3 [mm] の隔壁高さを大幅に超え侵入が確認された。また、実験 No.1（大便器; 洗い落し式）の器具数 2 の合流排水でも 21.8 [mm] となり、75A 排水ヘッダを用いた洗濯機を含む排水の場合侵入の危険性が懸念された。ここで、排水ヘッダを 100A に拡張し、大便器配管長さを排水管から 4〜8 [m] に変化させ実験を行った結果、浴槽を含む実験 No.6〜11 の排水では侵入が見られなかったため省略した。多くの実験パターンで侵入を防ぐことができたが、図 5 の凡例に示す器具数 3 の過酷な排水条件のとき Ls =1 [m] で浸入した。また、実験 No.4 (WH+SZ+HC 大便器 3 種) の合流排水において(1)基準ストレート・WC 配管ではトラップ内に侵入がなかっただけ、(3)延長ストレート・WC 配管の状態で侵入が見られなかった。以上より、大便器配管長さが短い場合より、長い場合の方が、逆流の侵入の危険性が高いことが確認された。

4 先端流速とトラップへの逆流水侵入の関係
図 6 に実験 No.4 (WH+SZ+HC WD) における Hg の隔壁高付近水位と大便器（洗い落し式）の排水ヘッダで合流する直前の流速の関係を示した。排水管管から大便器までの区間長さが 4 [m] の場合は流速が 1.38 [m/s]、q が 1.01 [L/s]、隔壁付近水位も 1.8 [mm] となるが、8 [m] に延長すると流速が 1.25 [m/s]、q が 0.70 [L/s] と低下し、隔壁付近水位は 8.1 [mm] に上昇した。これから、合流排水の際に図 2 に示す洗濯機からの排水が、他器具からの排水先端をブロックし、これらの排水が押し切れて浴槽トラップへの逆流が激しくなり、トラップへ侵入が生じたものと推定する。

(2) 延長配管実験
図 7 に最も侵入の危険性の高いストレート配管 8 [m] の場合で、実験 No.3 の洗濯機を含む器具数 3 の合流排水の結果を示す。Ls =1.0 [m] で最も隔壁付近水位多かった WH+SZ+HC (SZ) においても延長配管では Ls を 2.5 [m] 以上確保すれば、過酷な排水負荷条件でも耐え侵入を回避できることがわかり、安全な配管の長さを把握した。

(3) 立ち上げ配管実験

空気調和・衛生工学会大会講演論文集（2004.9.8 〜 10（名古屋））
実験

本研究は、第 3 報-実在住宅での排出性能評価と排水性能の検討、気調和・衛生工学会学術講演論文集[2004, 9 8 (名古屋)]

1) 山本和彦他:SI 住宅における排水ヘッダ方式の性能評価に関する研究 (第 8 報-合成影響評価の検討)、気調和・衛生工学会学術講演論文集、[2003, 9], P. 783～788

2) 等々力雅之他:SI 住宅における排水ヘッダ方式の性能評価に関する研究 (第 9 報-排水管長による排出システム性能の影響検討)、気調和・衛生工学会学術講演論文集[2002, 9], P. 1085～1086

3) 大森雅之他:SI 住宅排水管システムの性能評価と設計手法に関する研究第 3 報-実在住宅での排水性能評価と排水負荷の検討、気調和・衛生工学会学術講演論文集[2004, 1], P. 73～81