クラスター分析法を用いた負荷の類型化

Classification of energy demand using by clustering method

正会員　〇田口　明美（イーアンドイープラニング）　正会員　山本　亨（イーアンドイープラニング）
正会員　田中　雄（イーアンドイープラニング）

Akemi TAGUCHI*1　Tom YAMAMOTO*1　Minoru TANAKA*1

*1　E&E Planning Co., Ltd.

Synopsis: Building energy data which is recorded every day by BEMS(Building Energy Management System) and etc., should be used effectively. The present study proposes the classification of energy demand using by clustering method. In order to analyze the classification of energy demand, two factors are selected. First factor is the total demand volume, and second factor is the ratio of heat and electric power demand. By applying this method, classified energy demand was obtained in good accuracy and character of energy demand was carried out.

1. はじめに

パブリック施設に建築された建物を中心に多くの建物はニューアラム時を迎えようとしている。一方 2005年2月の京都議定書の発効や平成14年および18年の省エネルギーの改正等により省エネルギーCO2排出量の削減が急務の課題となっている。建物のニューアラム計画に際しては最大の考慮事項となっている。ニューアラム計画が新築計画と大きく異なる事項は、建物の運用データが得られることである。特に設備機器のニューアラム計画を行う場合には毎月取られているエネルギー管理データを活用して計画することが省エネルギー等の環境負荷の少ない建物を更新させることにつながることは論を待たない。しかし中央監視装置等の保守点検記録により取得されるエネルギー管理データは每時のデータであり、高橋らが中央監視データ等を積極的に利用して負荷の類型化を行う試みを行っているものの、データ量も報文であることが最大需要発生時のデータを分析的に活用されていないのが現状である。

本報告では建物の一般的な負荷である電力負荷、冷房負荷、暖房負荷、給湯負荷および蒸気負荷（以下負荷と称す）データの構築方法に関して、取得されているエネルギー管理データにクラスター分析手法を適用し、合理的に類型化する方法について報告する。

2. 類型化の指標

設備計画に必要な負荷データとは電力、冷房、暖房、給湯、蒸気負荷の需要量の組み合わせであり、負荷の類型化は建物のエネルギー需要を特徴づける負荷の組み合わせを選出することである。

負荷ごとに負荷の要素とその発生要因について整理した結果を表1に示すが、各負荷は人為的活動に影響を受ける要素と気象条件に影響を受ける要素で構成される。ここで人為的活動は建物の営業日／不営業日、イベントの有無等に生じる負荷であり、人為的活動量が増加すると負荷の合計需要量も大きくかかることから負荷活動に起因する負荷は合計需要量の大きさを関係する。従って負荷を類型化する場合の指標の一つは「各負荷の合計需要量の大きさ」とみなすことができる。また各負荷は収縮に伴うものであり、気象条件に伴う負荷の組み合わせや需要量の相対的な大きさが多大に一日において異なることから「各負荷の需要量の組み合わせ」についても負荷を類型化する指標と考えられる。

一方、設備計画では連続したデータとして需要量の24時間データがあり、時刻推移パターンについても負荷を類型化する指標の一つと考えられるが、建物が定常的な運行形態となっている場合には日別の合計需要量が同じで、かつ各負荷の日別需要量の組み合わせが同じでならば時刻推移パターンは近似すると考えられるところから時刻推移パターンは「各負荷の日别合計需要量の大きさ」と「各負荷の日別需要量の組み合わせ」に内在して考える。

このことは負荷需要を構築するデータとして各負荷の最大需要量、各負荷の月別需要量の組み合わせデータおよび季節（夏・冬・中間期）ごとに一例に規定した時刻推移パターンデータが提供されていることからも理解される。
できる。
以上の考察から負荷を類型化する指標として、入為的活動を評価する「各負荷の日別計需要量の大きさ」と気象条件を評価する「各負荷の日別需要量の組み合わせ」を取り上げる。

各類型化指標を評価する値を式1および式2で定義した。

$$E_{\text{気象条件}} = (E + SC + SH + HW + ST)$$　式1

$$E_{\text{気象条件}}$$を単に$$E$$とし、各負荷の日別需要量の組み合わせ（指標2）

$$C(SC/E, SH/E, HW/E, ST/E)$$　式2

式2において各負荷の需要量の組み合わせを熱の負荷（冷房、暖房、給湯、蒸気）と電力負荷の比（以後熱電比）としたのは次の理由である。

表1より、電力負荷の発生要因は人為的活動のみであり、その他の負荷の発生要因は人為的活動と気象条件の合成である。従って熱電比を評価することによって人為的活動の影響が相殺され、気象条件による各負荷の需要量の大きさが強調されると考えられる。図1にY病院の8月の日別冷房需要と日平均外気温度および熱電比（SC/E）を示すが、外気温度の変動に伴ういかなる外気診療の有無が日別冷房需要が減少している。従って日別冷房需要量は人為的活動の合計要因による要因が明確に保証できないが、各年の熱電比は公平な対策をとおり外気温度とほぼ対応していることがから熱電比により気象条件による要因が強調されていることが分かる。

図1 冷房需要と熱電比の変動

3. クラスター分析を用いた類型化方法

対象物を台車をデータの類似性を基準に分類する方法としてクラスター分析がある。本研究では中央監視装置等により取得られている日別の負荷の需要量を対象としてクラスター分析により類型化を実施した。図2に類型化の手順を示すが、類型化の指標である「各負荷の合計需要量の大きさ」と「各負荷の年間需要量の組み合わせ」は独立した指標と考えられることから、第1ステップとして「合計需要量（指標1）を用いてクラスター分析を実施し、第2ステップとして第1ステップで得られたクラスター毎に「合計需要量の組み合わせ」（指標2）を用いてクラスター分析を実施した。

第1ステップ

指標1のデータを用いてクラスター分析

クラスターの特性を考慮しαのクラスターを選出

第2ステップ

指標2のデータを用いてクラスター分析

クラスターの特性を考慮しβのクラスターを選出

全てのクラスターが終了　No

Yes

$$\Sigma (n_1 \cdots n_a)$$個のクラスターを選出

図2 類型化の手順

4. 類型化結果

Y病院を対象にクラスター分析を用いた負荷の類型化を実施した。対象建物の概要を以下に示す。

○建物用途：総合病院

○熱源システム

ガス吸収式冷温水機：25,800MJ/h（680USR t×3台）
水冷チラー：1,800MJ/h（70USR t×2台）
蒸気ボイラ：27,000MJ/h（4ton h×3台）

○年間エネルギー消費量：294,000GJ/年

図3に中央監視装置から取得した年度の日別エネルギー消費量を示す。図3に示すように、データの類型を避けるため各月の第2週目から第2週目に至るまでのデータを用いて各月の需要量を算出した。ただし、1月および5月の最初の週は休日が多く第2週目のデータを用いた。

図3の電力需要は熱源機および熱源補機の電力消費量を除いた値であるが、8月および9月の電力需要が他の月よりも大きくなっているのはパッケージエアコンが二付け空调機等の電力量が含まれているためである。パッケージエアコンの電力を除却した場合には、年度を通して電力需要は季節的な変動がなく、入為的活動によって生じる平日／休日の需要量の変動が表れる。また表2にクラスターの番号と対応した日付およびクラスター

空気調和・衛生工学会大会学術講演論文集 [2006.9.27～29（長崎）]

— 1662 —
分析に用いた負荷の熱電比と日別合計需要量を示すが、熱電比については算出した値の10倍、日合計需要量は10^3倍した値を用いた。なお、クラスター化はward法を用いた。

図3 日別電力需要の推移

図4 日別熱電需要の推移

図5 日別合計需要量の推移

図6に第1ステップのクラスター分析で得られた денプログラムを示す。ステップ1でのクラスターの選出はクラスターの距離と人為的活動の特徴を評価し、以下に示す4つの統合クラスターを選出した。

1. 統合クラスターC1: 平日（中間期）、土日（夏、冬）
2. 統合クラスターC2: 土日（中間期）
3. 統合クラスターC3: 平日（盛夏、厳冬）
4. 統合クラスターC4: 平日（夏、冬）

次にステップ2として統合クラスター（C1〜C4）それぞれについて4つの熱電比を用いてクラスター分析を実施した。結果を図7に示すとともに、表3に統合クラスターC1における分析結果を示す。表3より統合クラスターC1は平日（中間期）が2グループ、土日（夏）および土日（冬）として統合クラスターC1-1からC1-4に分類される。他の統合クラスターC2からC4においても同様に人為的活動（土日）と気象条件（季節）の組み合わせで分類され、合計12の統合クラスターが構成される。

<table>
<thead>
<tr>
<th>クラスター</th>
<th>日付</th>
<th>日付</th>
<th>SC/E</th>
<th>日付</th>
<th>HM/E</th>
<th>ST/E</th>
<th>合計合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-1</td>
<td>6月</td>
<td>1日</td>
<td>10</td>
<td>1日</td>
<td>1日</td>
<td>1日</td>
<td>60</td>
</tr>
<tr>
<td>C1-2</td>
<td>6月</td>
<td>1日</td>
<td>10</td>
<td>1日</td>
<td>1日</td>
<td>1日</td>
<td>60</td>
</tr>
<tr>
<td>C1-3</td>
<td>6月</td>
<td>1日</td>
<td>10</td>
<td>1日</td>
<td>1日</td>
<td>1日</td>
<td>60</td>
</tr>
<tr>
<td>C1-4</td>
<td>6月</td>
<td>1日</td>
<td>10</td>
<td>1日</td>
<td>1日</td>
<td>1日</td>
<td>60</td>
</tr>
</tbody>
</table>

クラスター分析を用いた類型化方法の精度を検証するために、各統合クラスター（C1〜C2）を対象とするクラスターを決定し、その代表クラスターの需要量に統合クラスター内に存在するクラスターの数乗じた値と統合クラスターの合計需要量との差を評価する（式3）。また代表クラスターの決定は熱電比を基とした統合クラスター内の各クラスターのユークリッド距
離が最小となるクラスターを代表とした。

$$
\text{誤差}\delta = \left(\sum_{i=1}^{N} Q_i - Q_s \times N \right) + \sum_{i=1}^{N} Q_i
$$

式3

Q_i：統合クラスター内に存在する各クラスターの負荷
N：統合クラスター内に存在するクラスターの数
Q_s：代表クラスターの負荷（E, SC, SH, HW, ST または T）

表3 類型化の結果（統合クラスターC1）

<table>
<thead>
<tr>
<th>クラスター</th>
<th>N</th>
<th>SH</th>
<th>SW</th>
<th>SC</th>
<th>HW</th>
<th>ST</th>
<th>HWST</th>
<th>順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-1</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>C1-2</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>C1-3</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>C1-4</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>4</td>
</tr>
</tbody>
</table>

表4 類型化の精度

|------|--------|--------|--------|--------|--------|--------|-----------|

表4に負荷ごとに誤差を評価した結果を示すが、最も大きな誤差も冷房需要の9%であり、設備計画に用いるための負荷データとして十分活用できるものと考えられる。

4. まとめ

建物における設備運用方法の検討やリニューアル計画を合理的に行うために、中央監視装置等で取得されている膨大なエネルギー管理データを対象に、クラスター分析方法を用いた負荷の類型化方法について提案した。その結果、クラスター分析を「日別合計需要量の大きさ」と「日別の熱電比の組み合わせ」の指標を用いて2段階の分析を実施することにより建物の負荷の特性を反映した類型化が実施できることが確認した。

今後は、他用途の建物における類型化を実施し、本手法の精度と適用範囲について検討してゆく予定である。

参考文献

1) 高橋雄司他「最適化手法を用いた建物のエネルギー管理手法」その1：事務所ビルにおけるエネルギー需要パターンの合理的な類型化 空気調和・衛生工学会学術講演会論文集 (2001).p1717～1720
2) コージェネレーションシステム計画法・設計と評価 社団法人空気調和衛生工学会 平成6年