A-3

建物の環境性能向上と都市インフラ負荷削減効果に関する研究
東京 23 区及び全国 47 都道府県の住宅における水消費性能向上による効果の検討
A study on effect of urban infrastructure load reduction by enhancing performance of water consumption in houses in 23 wards of Tokyo and in 47 cities across Japan.

学生会員 ○海藤 俊介（宇都宮大学） 正会員 横尾 昇剛（宇都宮大学）
正会員 岡 建雄（宇都宮大学）

Shunsuke KAIDO∗1 Noriyoshi YOKOO∗1 Tatsuo OKA∗1
∗1 Utsunomiya University

The object of this paper is to present effect of urban infrastructure load reduction by enhancing performance of water consumption in houses in 23 wards of Tokyo and in 47 cities across Japan. We calculate the economic effects of water-saving measure and energy consumption and CO2 emission due to managing urban infrastructure load. As result, enhancing performance of water consumption by means of water-saving device affects not only household water reducing consumption but also urban infrastructure load reduction and brings about positive economic effects.

1. はじめに
各家庭に節水機器の導入、雨水利用を行うことによりインフラ側である上下水道施設では動力費や薬品費などのコスト削減及びCO2削減効果が期待できる。図1にインフラの範囲を示す。図1中の都市設備の範囲を本研究の扱うインフラの範囲とする。

本報は、東京 23 区及び全国 47 都市の住宅の戸建住宅における上下水、雨水を対象に、個々の建築物の性能向上が上下水道施設に与える環境負荷削減効果及び経済効果を定量化した。

2. 東京 23 区の現状分析
2.1 家庭とインフラの現状と上下水処理場の課題
表2に東京 23 区の人口比較世帯数及び各家庭での１ヶ月当たり使用水量、表3に消費支出における光熱費を示す。東京 23 区の現有処理能力、将来人口ピーク時の予測について表4に上水道、表5に下水道を示す。また、施設維持管理費について図2に上水道、図3に下水道を示す。図3に東京都水道局の水道需要、水源及び施設能力の推移を示す。東京の水道需要は昭和 30 年代後半から 40 年代にかけて大幅な増加を記録した。図4に示すように 1961 年から1980 年までに竣工した浄水場が多く、施設能力も高かった。

2.2 節水型衛生機器による削減効果の検討
住宅に各種節水衛生機器を導入した際の使用水量、使用流量、使用回数等から年間の使用水量、使用料金の削減効果を計算した。

(1) 節水機器の選定及び各原単位の設定

表1 住宅側の水効率の利用とインフラ負荷低減の効果

図1 インフラの範囲

表2 世帯平均使用水量及び1世帯あたり1ヶ月の消費支出における光熱費の割合

表4 浄水場における現有処理能力と将来予測

表5 処理場における現有処理能力
対象とする衛生機器は日常生活で使用頻度が高く、削減効果が期待できるシャワ、洗面台、食器洗浄乾燥機、便器の3種類とした。洗濯は家庭構成により使用水、節水型洗濯機を使用した場合の節水効果が大きいため対象外とした。

シャワーは節水シャワーヘッドに、便器は節水型便器に変更することにより、食器洗いも手洗いによる場合と食器洗浄乾燥機を用いた場合を比較した。図5に家庭での用途別使用水の割合を示す。家庭の一人当たり一日の使用水はおよそ0.242m3である。

水道料金は東京都23区の上下水道料金を使用し、CO2換算原単位は0.36kg-CO2/m3とした。評価項目の計算方法として、年間使用水は1日の使用回数に各衛生器具の使用水を乗じて算出した。

(2) 評価項目の試算結果
表6に世帯別削減効果を示す。世帯別の6人以上の人員については、東京都区部の人数6人以上10人以上の世帯の平均値を取った。各機器に節水型を使用する場合の削減量は、使用水量、使用金額、CO2排出量の削減が期待できる。家族構成の多い世帯ほどその効果は大きい。1人世帯は水道料金制度のためほとんど効果は見込めない。

2.3 区部での実算
表7に区部全体での節水型機器を導入した場合の試算結果を示す。表8に機器の組合せによる効果を示す。投資回収年は、節水機器導入にかかるコストを水道料金の削減金額で除するものとして算出した。世帯人数の多い世帯ほど節水機器導入による水道料金の削減率が高く、投資回収年は現実的である。

節水対策の組合せによって設定したレベルに基づき、削減効果を算出した。表9に普及率の定義、表6に普及率、レベル別の削減水荷およびインフラでの削減効果金額を示す。東京都区部の1世帯当たり平均世帯人口数は2.05人であり、削減金額が、回収年等から見て実現的は世帯別1人以上の世帯での導入であるといえる。そのため、50%以上の普及率でもインフラでの削減効果は十分期待できる。

表7 全世帯に節水型機器を導入した場合の効果

図4 畦工年度別浄水環境および施設能力

表5 世界人口別節水型機器による年間削減効果

国際間の比較

図5 普及率、レベル別削減水荷およびインフラでの削減効果

空気調和、衛生工学会大会学術講演論文集(2008.8.27－29.東京)
3. 全国47都道府県の現状

全国47都道府県の県庁所在地について戸建住宅における節水及び雨水利用による経済効果を試算する。また、インフラでの負荷削減量及びCO₂削減量の都市による効果の違いを比較、考察する。一般家庭での使用水量は、年間生活使用水量を一人当たり使用量と共に戦後は増加の一途を辿っていたが1997年をピークに近年は横ばいの傾向にある。また、浄水場および処理場については1960〜80年かけてインフラ整備が進み、経済・処理能力共に著しく増加した。今後これらの大半が寿命を迎え、その整備や再建設に伴う費用及びCO₂の排出が懸念される。

3.1 都市特性

人口の推移は2020〜30年に人口のピークを迎え、以降減少傾向に向かうと予想されている。このため多くの都市で現在インフラの処理能力が不足すると言われている。表9は人口推計とインフラ拡張率をもとに都市を各3分類、合計9分類する。人口はピーク時の人口の増減率、拡張率は世帯当たりの給水路長を指標とした。

3.2 節水機器導入による効果の検討

各都市について各種節水機器を導入した場合についてそれぞれ試算する。表10に各機器の水使用量の計算方法と導入コストを示す。導入の優先順位は費用対効果が高い大人数世帯から優先的に設置していくものとし、最大量を現在の普及状況から80%とした。

図7〜9に一般住宅における各種節水機器導入による年間削減金額及び回収年を示す。ここでの削減金額は水道料金のみを計算する。また、回収年については各世帯単位で削減された上下水道料金を節水機器導入時のコストで除したものである。節水シャワーヘッドは導入コストに比べ削減効果が高く、1〜2年で回収可能な都市も多い。図7洗濯機については十数年に回収可能な都市もあり、実現可能な数値である。図8洗濯機の効果に関わらず使用水温がほぼ変わらないことから、大人数世帯に導入した場合は効果が高いため、一方で単身世帯ではあまり効果は期待できない。節水トイレにおいてインシダルコストが高いため回収年数は大きい。図9

3.3 雨水利用施設の効果の検討

雨水貯留施設は屋根面に降った雨水を集水しタンク等に貯留して中水として利用する。雨水利用施設の機能評価は「簡易式法」を用いて行う。ここでの集水面積は屋根面積とし、貯水槽容量1㎥、使用量5L/h、設置コスト7万円と設定する。

図10の世帯当たり削減量と集水面積の相関を図11に都市全体の削減効果と世帯当たりの削減量を示す。屋根面積の大きい場合でも降雨量の少ない地域では、世帯当たりの削減量は少ない。雨水貯留施設の効果は降雨量の影響が大きい。

表9都市分類

<table>
<thead>
<tr>
<th>都市群</th>
<th>豊水群</th>
<th>貧水群</th>
</tr>
</thead>
<tbody>
<tr>
<td>豊水群</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>貧水群</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

表10各種節水機器

<table>
<thead>
<tr>
<th>機器</th>
<th>効率</th>
<th>成本</th>
</tr>
</thead>
<tbody>
<tr>
<td>簡易式法</td>
<td>0.8</td>
<td>5万円</td>
</tr>
<tr>
<td>汎用式法</td>
<td>0.9</td>
<td>7万円</td>
</tr>
</tbody>
</table>

図7節水シャワーヘッドの削減効果と回収年数

図8食洗機の削減効果と回収年数

図9節水トイレの削減効果と回収年数

図10集水面積と世帯当たりの削減水量の相関
3.4 削減効果の分析

図12に50％普及時の世帯当たりの削減金額と削減水量を示す。料金形態や家族形態から、削減金額・削減水量が共に地域差がある。鳥取市は世帯当たりの削減量が大きく、削減金額は小さいが環境負荷の低下に大きく貢献できる。図13に削減金額を示す。削減金額は都道府県の平均を示し、鳥取市と札幌市の割合が大きい。図14にCO2削減総額を示す。横浜、広島、名古屋などの大都市でCO2削減総額が大きく、一部が示す。図15に世帯当たりCO2削減量と総額、回収年数を示す。広島市、富山市、福井市は世帯当たり年間30kgの削減効果があり回収年数も少ないと考えられる。一方、神戸市、福岡市、特別区部、大阪市の4都市は、1世帯当たりの削減量が少ない反面インフラの規模が大きく、少ない導入率でも削減総量は大きいと予測される。

4. 結論

1) 東京23区における住宅の節水等の水消費に関する性能を向上させることにより住宅の水消費量の削減だけでなく、都市インフラである上下水道施設側での施設の運用・維持管理に伴うエネルギー消費量、CO2排出の削減に繋がることが確認できた。

2) 全国47都道府県ごとの算出から都市の特性の違いを確認した。また、住宅における水消費性能の向上によるCO2削減効果および上下水道施設における削減効果を明らかにした。

参考文献

1) 東京都水道局平成15年度生活用水実態調査
2) 統計局：平成17年国勢調査「世帯人口数」
3) 統計局：家計調査「都市階級・地方・都道府県分布」
4) 世界ビジョン基本データ集
5) 東京都水道局調査(2002年度)
6) 環境省：環境計画
7) 備国文化・建築環境・省エネルギー機構: 自立循環型住居への設計ガイドライン
8) 平成16年度水道統計 平成16年度下水道統計
9) 人口問題研究所
10)「都市雨水循環施設の設置及び利用推進総合計画」実用化・大学新学術論文集・気象庁 各市上下水道局IP統計局「家計調査」「土地統計調査」「国勢調査」