尿流量測定装置を有する大便器の性能評価に関する研究
第1報 高層排水実験タワーでの基礎的性能評価

Study on Performance Evaluation of the Water Closet System equipped with Uroflowmetry Analyzer

Part 1 Basic Performance Evaluation by High-rise Experimental Tower

1. はじめに

尿流量測定装置を使用した場合において、測定装置の性能評価を実施するために、高層排水実験タワーを用いた基礎的性能評価を行った。本報では、高層排水実験タワーを用いた基礎的性能評価の結果について報告する。

2. 実験概要

2.1 尿流量検査装置

尿流量検査装置の測定の原理を図1に示す。大便器の

水位の水位を測定水位Bを滋濁水位Bより低い水位としており、大便器の便座中に排尿することで水位

水位の水位が上昇する。これに伴い、ネット管および管

圧管を介してU字管を構成した測定管の水位Bも上昇する。

この測定管の水位Bを水位センサで検知して、検知して求めておいた検定線を用いて、時間変化に対する

水位変化を検知し、効果的装置の測定精度を評価した。また、測定精度を考慮し、検定精度を計測した。

2.4 擬似尿投入方法
実際の患者の尿量および尿流量の波形は、図4に示すように(1)正常型を標準に、患者の疾患の状態に応じて(2)前立腺肥大型、(3)神経性膀胱型の計3つのパターンに区分できる。本研究でもその区分に従い、便器内に(1)～(3)のパターンで清水を投入し、それぞれのパターンが精度よく測定できるか、否かを確認した。
(1)、(2)の試験では排泄量を200mL、400mL、600mL、800mLの4パターンで試験を行い、尿流量の発生状況を再現するために、図5に示すように穴の開いた容器に清水を溜め、柱を抜き定量的に投入した。(3)の試験では全排尿量(清水50mLを除き、サポートで何回かに分け投入した。)

2.5 測定項目および方法
測定は節頂通気管内圧変動Wと、排水立て管システムの各排水横支管の管内圧力変動Pを測定した。判定条件としては、管内圧力変動が±400[Pa]以内を目安に試験した。尿量および尿流量に関しては、尿量、尿流量の時系列波形および尿量u、最大尿流量qmaxについて、その測定精度を確認した。

図3 管内圧力変動(2.5[L/s]、2.5[L/s])の例

図4 擬似尿投入パターン

図5 擬似尿投入方法

図2 供試排水立て管システム

図6 管内圧力分布
3 実験結果および考察
3.1 管内圧力分布と投入時検量波形

次に、排水負荷がつらい無負荷時と管内圧力変動が加わった場合の尿流量および尿量波形を、それぞれ投入パターンごとに図6に示す。管内圧力変動時の尿流量波形、尿量波形については、それぞれ最大最小圧力がほぼ200Pa、200Paに達した状態の波形を示した。これより各投入パターンを無負荷時の場合と比較すると400Paの場合では流量波形は正常型、前立腺肥大型共に大きく乱れることを知る。これは、管内で発生する正圧の影響により排泄前の前水圧が大きく損なわれ、尿流量波形が乱れているものと推察される。これに対し、400Pa付近の場合では尿流量波形に乱れは少ないが、尿量波形は無負荷時に比べ、小さくなる。これは管内が負圧になるため排泄の前水圧が排水管内に引き込まれ、測定値が無負荷時に比べると小さくなるとも言える。

また、既報1で示された尿量は十分であると報告されている200Paでは、尿流量波形においては、差異が見られが、尿量波形は無負荷時と大差ない波形を検出でき、各疑似尿投入パターンで既報と同じ結果が得られた。

3.2 管内圧力と測定精度
(1) 尿量%測定結果
図8は尿量検査器大を設置した7階の管内最大圧力Pmax、2階の管内最大圧力Pminとそれぞれ疑似尿を投入した尿量%の測定値を示す。同図の(1)は正常型、(2)は前立腺肥大型、(3)は神経性膀胱型の試験結果である。図中には、参考までに変動係数（標準偏差/平均値）を示した。これより、1と3が同様に正常型、前立腺肥大型では負荷圧は200[Pa]程度まで、十分な測定精度を確認できた。200[Pa]を超えると排水管内に引き込まれ、投入量と測定値の誤差が大きくなることがわかった。また、正圧側では、正常型、前立腺肥大系共に投入量と測定値は十分な誤差範囲内で測定できた。神経性膀胱型では、負圧、正圧共に実投入量と測定値の誤差は大きくなり、最大で25[ml]程度の差異が生じた。

次に変動係数を比較すると、正常型、前立腺肥大型は0.02～0.30と変動の幅がわずか、しかし、神経性膀胱型は0.45と変動の幅が大きくなることがわかった。神経性膀胱型の投入パターンに関して尿量%の精度が十分であるのは、トラブルが形成する振動系が持つ固有振動数が1～2Hzであり、測定した波形をデジタルフターダで所定の周波数以外のノイズを取り除き、その波形を移動平均で補正しているため、短い時間で少量投入する神経性膀胱型は測定精度が低下しているためであると推察する。

(2) 最大尿流量Qmax測定結果
図9に図8と同様に疑似尿投入パターンごとの最大尿
流量 q_{max} の測定値と管内圧力 (P_{in}, P_{max}) の関係を示す。同図より正常型、前立腺肥大型共に、最大尿流量 q_{max} は、±500Pa 未満において概ね一定の値で測定できた。神経因性膀胱型に関しては、尿量の測定結果と同様にばらつく結果となった。しかし、尿流動変化は、正圧時、負圧時共に図7に示すように追従できるので、尿量と尿流動との測定結果を併用することで患者を特定することが可能と考える。

3.3 測定誤差

図8、9を最大流量 q_{max} の測定精度を示す。図8(1)は、既報で十分な精度を確認できた±1000Pa以内、図8(2)および図9は±2000Pa以上を示したものである。また図8(3)には±10%の誤差のラインを引きた、その精度を確認した。これより、尿量 W の(1)では±10%以内におさまる結果となり、(2)ではばらつき傾向が見られた。最大尿流量 q_{max} はすべての投入パターンでばらつきがみられ、その誤差は最大で10[(ml/s)]程度であることがわかった。

4.まとめ

高層排水分管実験ダーティーでの合流排水分管試験装置を用い、尿量検量便器の性能を検査した結果、以下の知見を得た。
(1)実際の患者の排尿パターンを模擬した正常型、前立腺肥大型、神経因性膀胱型の3つのパターンにおいて尿流量と尿量の検量を行った。その結果、管内圧力変動が±1000Pa以内の範囲では、正常型、前立腺肥大型は十分な精度で測定が可能であった。
(2)神経因性膀胱型においては、尿量の投入量は少ないが、尿量の測定値はばらつきが他者に比べ、見られた。
(3)同便器は病院施設などの2水管ループ内に排水分管システムで用いられているので、SHASE-206に規定される許容圧力差±100Pa以内では十分な測定精度を確認することができたわかった。

参考文献
1) 吉田克也: "尿量検量便器の性能検査に関する研究開発", 日本建築学会技術報告 (2000) 6
2) 大塚雄一: "排水分管においての合流排水分管システムの排水分管試験に関する研究 その1 合流排水分管システムの開発", 日本建築学会技術報告 IV-60, pp. 17~24, 2007 9
3) SHASE-206 "複合住宅の排水分管システムの排水分管試験に関する研究 その1 合流排水分管システムの開発", 日本建築学会技術報告 IV-60, pp. 17~24, 2007 9
4) 岡野浩二: "トラップ内の排水分管の数値解析", 空気調和・衛生工学会論文集 No. 82: pp. 69~77, 2001
5) 岡野浩二: "トラップ内の排水分管の数値解析", 空気調和・衛生工学会論文集 No. 84: pp. 67~69, 2002