地域冷暖房リニューアルに伴う高効率化シミュレーション（その 3）
Potential for the Energy Efficiency Advancement in District Heating and Cooling Plant by Renovation (Part-3)

はじめに
近年民生部門での省エネルギーが求められる中、その対策の一つである「エネルギーの面的利用」が注目されおり1）、その一つの形態が地域冷暖房システム（DHC）である。既往のDHC関連研究では、シミュレーションを用いた検討によって、個別熱源システムと比較してDHCのエネルギー効率の高いことが示されている2)。

近年、冷凍機や CGS・搬送ポンプといったDHCを構成する機器の効率改善が進められており、リニューアルによってDHCプラント全体のエネルギー効率を大きく向上させることができると考えられる。例えば吸収・ボイラ方式のプラントでは、大規模CGSの導入でエネルギー効率が大幅に上昇することが示されている3)。

前報まで6)に高効率化改修を行った吸収・ボイラ方式のプラントを対象に、改修後のプラントを再現したシミュレーションを作成した。そして改修後一ヶ月間の実態データを用いて精度確認を行った後、2005年度の熱負荷・気象データを用いて、改修後のプラントのエネルギー消費効率の改善について予測を行った。

本報では改修後の実データを用いてシミュレーションモデルの再現精度向上を行った結果について述べるとともに、本モデルを用いて今後更なる運転・設備改善による総合エネルギー効率向上の可能性を定量的に評価することで、吸収・ボイラ方式DHCの高効率運転方法の検討を行う。

1. シミュレーションモデルの概要
図-1に本論で使用しているシミュレーションモデルのフローチャートを示す。本シミュレーションモデルは実態の気象条件、冷水・冷熱需要量、CGS電力製造量、温熱需要を入力することで、各々の条件に合わせて稼動機器の種類や台数、性能を決定し、それに応じて最終的に電力消費量とガス消費量を算出するモデルとなっている。

2. シミュレーションモデルの改善点
昨年度作成したシミュレーションモデル（以下、昨年度モデル）に以下の改善を加えた。
1) 冷凍機立ち上げロジック
実態では年間を通してターボ冷凍機の稼働割合が高く、シミュレーションでは蒸気ジェネリック吸収式冷凍機の稼働割合が高くなることが確認され、この違いが実態値とシミュレーション結果の最大の誤差要因であることを確認した。これは実際のプラントではオペレーターが冷熱・冷水需要量に合わせた運転を手動で行っており、CGS
が稼働している時間帯においてもターボ冷凍機のみで需要を満足できる場合はターボ冷凍機のみで運転を行い、CGSからの排湿水を有効に利用せずに冷却塔にて棄てることがある。この理由は、7月1日～9月14日のピーク期間は電力需要の要因であるため、負荷に関わらずターボ冷凍機を停止させるロジックを採用していたが、実際には負荷が小さい時間帯においてはターボ冷凍機を停止させずに運転させていることが確認された。

以上の理由から、運転ロジックを図-2のように変更した。また表-1に冷凍機発停順序表を示す。

2) 冷却塔モデル

昨年度の冷却タールモデルは図-3に示すように1台の冷凍機に対して1台で対応するという仮定で作成されていた。しかし、実際のプラントでは図-4に示すように、冷却水配管は集合管方式で接続されている。また、冷却塔は西側と東側にそれぞれ分けられており、西側は1号吸収式冷凍機、2号吸収式冷凍機、5号蒸気ジェネリック吸収式冷凍機、6号蒸気ジェネリック吸収式冷凍機、および2号吸収式冷凍機を接続しており、東側に3号吸収式冷凍機および4号吸収式冷凍機を接続している。東側の冷却塔群の冷却水配管にはCGSからの排湿水も接続されている。

3) CGS排熱処理計算

CGSは平日の8:00～22:00の間に稼働し、稼働中は常時電力、蒸気、湿気が発生する。電力は需要家側に送電され、蒸気はプラント側で冷熱製造に利用される。湿気は蒸気ジェネリック吸収式冷凍機が稼働している場合には蒸気ジェネリック吸収式冷凍機で消費され、使用されずに残った余分および蒸気ジェネリック吸収式冷凍機が稼働していない場合の湿気は冷却塔にて放熱される。昨年度モデルではCGSの排湿水を処理するためのエネルギー消費量を計算するモデルは組み込まれていたが、前節で述べたように冷却塔にて排湿水を処理するモデルを付け加えた。

4) 吸収式冷凍機のCOP

図-5、図-6に1号吸収式冷凍機の冷却水入口温度に対するCOP、熱負荷率に対するCOPの変化を示す。両者を比較すると、実態よりもシミュレーション結果のCOPが若干低いことが確認された。この点については他の吸収式冷凍機でも同様の傾向が確認された。そこでそれぞれのCOPの平均値を求め比較することで、1号機および3号機はCOPを1.18倍、2号機および4号機はCOPを1.12倍の値に修正した。

5) ターボ冷凍機過熱量制御設置値の変更

本プラントのターボ冷凍機は定格流量の160%までの過熱過流量制御が可能であり、前報でのシミュレーション
6) 補機動力
シミュレーションでの補機動力には、冷水ポンプ動力・冷却水ポンプ動力・OCS系ポンプ動力（排温水・冷却水ポンプ）・冷却塔ファン動力・ボイラ補機動力・吸収式冷暖機補機動力6)を含んでいる。それに対し実際の補機動力はプラントの受電電力量で代替しており、その値にはプラント内の空調、照明といった動力も含まれている。そのため、前報ではプラントの補機動力の再現性に問題があった。そこで、プラント内補機動力として実態から得られたデータである夏季100kWh、中間期・冬季70kWh、夜間65kWhをシミュレーションの全時間に追加した。その結果、実態の補機動力とシミュレーションの補機動力の差は6.43%となった。

3. 変更後シミュレーションモデルの精度検証
2009年1月より2009年12月の各需要データ及び気象データをシミュレーションの入力条件とし、シミュレーションの精度検証を行った。図7に毎時の冷凍機運転台数を表2の運転マップの比較を、表4にマップ内機器対応表を示す。図より、冷凍機の運転台数に関してモデル変更前に比べて変更後のモデルの方が実態をより良く再現できていることが確認できる。また図8に2月22日のエネルギー消費量の日変化を示す。夜間運転から日中運転に切り替わる午前8時頃の値の再現性に問題があるが、シミュレーションの精度は向上していることが確認できる。さらに年間一次エネルギー消費量を表4に、月別の一次エネルギー消費量を図9に示す。変更後モデルでのプラントの年間一次エネルギー消費量の誤差は−2.8%、RMSE（平均二乗誤差）は1.7%となっており、年間を通してシミュレーションの精度は向上したことが確認できる。また全体的な誤差は、実際のプラントでは需要に応じてオペレーターの判断で時々刻々と運転変更を行っているのに対して、シミュレーションでは季節や時間帯、曜日の区分だけで運転ロジックを一定に定め、時間ステップで計算していることの影響が大きい。夏季に実態値との誤差がやや大きいのは、夏季は特に空調機器の台数が多くなる等、制御が複雑になるため、その問題が顕著に表れたためであると考えられる。

表2 ターボ冷凍機過流量制御設定値

<table>
<thead>
<tr>
<th>季節</th>
<th>夏期(6.00～22.00)</th>
<th>夜間(22.00～6.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏期</td>
<td>90%</td>
<td>105%</td>
</tr>
<tr>
<td>中間期</td>
<td>100%</td>
<td>140%</td>
</tr>
<tr>
<td>冬期</td>
<td>150%</td>
<td>160%</td>
</tr>
</tbody>
</table>

図7 冷凍機運転台数マップ
(左から変更前モデル、変更後モデル、実態)

図8 エネルギー消費量の日変化(2月22日)

表4 年間一次エネルギー消費量

<table>
<thead>
<tr>
<th></th>
<th>変更前モデル</th>
<th>変更後モデル</th>
<th>誤差</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C05ガス消費量</td>
<td>42711</td>
<td>40527</td>
<td>51</td>
<td>1.9</td>
</tr>
<tr>
<td>ポイラーガス消費量</td>
<td>15358</td>
<td>148763</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>冷凍機消費量</td>
<td>45197</td>
<td>41381</td>
<td>3.2</td>
<td>4.1</td>
</tr>
<tr>
<td>ターボガス消費量</td>
<td>12043</td>
<td>12950</td>
<td>15.0</td>
<td>1.1</td>
</tr>
<tr>
<td>合計</td>
<td>253513</td>
<td>244627</td>
<td>3.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>
前報では一般的な按分法を用いて総合エネルギー効率0.890という結果を得たが、上記の算出法を用いた場合は0.870となる。以降は東京都の算出法を用いる。
ベースケースでは実態の運転手法を反映しているため、ターボ冷凍機の過流量制御が適切に行われていないことや冷水温度差が確保されていないことが影響し、総合エネルギー効率は0.886となった。次に、以下に示す4つの効率向上策の導入を検討する。

1）ジェネリック吸収冷凍機の過流量制御
本プラントで使用している蒸気ジェネリック吸収冷凍機は30%過流量制御が可能である。この制御の導入によって冷凍機線動力の抑制を図ることが可能である。

2）パイパス流量変更
運転実態分析よりパイパス流量が約23%と過大であることが判明し、必要以上の冷媒ポンプ・冷凍機が稼動している問題が確認された。よって適正な運転としてパイパス流量を10%に設定する。

3）ターボ冷凍機過流量制御
本プラントで使用しているターボ冷凍機は160%過流量制御が可能であるが、実態では過流量制御が適切に行われているのは冬季のみであった。そのため、電力デマンドの大きい夏期の外気にターボ冷凍機の過流量制御を最大100%まで行う設定に変更する。

4）冷水温度差確保
プラントの設計冷水温度差が6℃であるのに対し、実態では多くの時間で3℃～4℃と冷水温度差が確保されていない。これによって必要以上の冷凍機が稼動する等、効率低下をもたらす原因を引き起こしている。よって本プラントの需要約6割を占める需要家冷水選温度を現状の10℃から11.5℃に変更することとした。

図10よりターボ冷凍機の過流量制御変更、パイパス流量変更、ジェネリック過流量制御、冷水温度差確保の順に効率向上の効果が大きいくちえる。いずれの対策においても中間期・夏季の効率向上が顕著であり、冬季はもっと向上が見られない結果となった。これは冷凍機の稼働台数が抑制されたこと、またそれによって効率の高い冷凍機の冷凍製造割合が増加したことの2点が大きく影響していると考えられる。

4.2 各対策の積み上げ効果
次に、前節で示した4つの対策を積み上げることによって得られる効果の検証を行う。図11にベースとの比較結果を示す。年間の総合エネルギー効率はベースの0.865と比較して対策導入後は0.894と改善が見られた。特に中間期の改善が大きく、これは前節で述べた過流量制御の変更が大きく影響していると考えられる。
これらの対策は比較的導入が容易であり、本プラントの設備を維持した状態で運転改善ののみを行えばよい。

図10 各種対策による総合エネルギー効率の変化

図11 ベースケースと改善後の総合エネルギー効率の比較

5. まとめ
本研究では実際に高効率化リニューアルを行った吸収・ボイラ方式のプラントを対象に、実態の機器・運転手法を再現した精度の高いシミュレーションモデルを作成し、その後効率向上に有効であると考えられる対策を導入することで、総合エネルギー効率が0.886から0.894に向上するという結果が得られた。

参考文献
1）（社）日本熱供給事業協会：エネルギーの面的利用促進研究会について、平成17年4月
2）佐土原聡：地域性熱供給システムの省エネルギー性とCO₂削減インパクト－地域性熱供給システムの省エネルギー性、CO₂削減効果に関する実態研究・その3－、日本建築学会大会学術講演論文集、（2003.9）、pp.535-536
3）久原清子：地域冷暖房システムの省エネルギー性能評価手法に関する研究（第5報）、空気調和・衛生工学会大会学術講演論文集、（2007-9）、pp.1713-1716
4）下田善之：地域冷暖房システムの省エネルギー性評価手{}
5）中田良直：地域冷暖房システムの運用実態と最適化改善手法に関する研究（第1報）、空気調和・衛生工学会大会学術講演論文集、（2009-9）、pp.827-834
6）東京都：エネルギー環境計画指針、平成17年6月13日告示第864号