空調熱源システム改修時における機器容量のダウンサイジング効果
Effects by Downsizing of Equipment Capacity at Renewal

正会員 ○鈴木 智也 (関西電力) 正会員 住吉 大輔 (九州大学)
非会員 名古田知志 (アズビル)

Tomoya SUZUKI*1 Daisuke SUMIYOSHI*2 Tomoji NAGODA*3
*1 Kansai Electric Power Company, Inc. *2 Kyushu University *3 Azbil Corporation

The purpose of this research is to quantify the energy conservation effects and cost saving effects by downsizing of heat source equipment capacity. In this paper, simulation models of air conditioning systems are developed, and effects by downsizing of heat source equipment are estimated.

1. はじめに

空調システムの熱源機器・ポンプ等の機器容量は最大負荷計算に基づき選定される。一般的に新築時の設計段階では運用実態を把握することができないため機器容量に余裕をもたせる。標準的な設計では、余裕が大きく設定され、過大な容量の機器が選定されることが多い。新築物件においてある程度余裕を見込むことは避けられないが、機器改修の際は過去のデータを分析し、適切な空調システムの機器容量を選定することが可能である。負荷に対して適切な機器容量を選定することができれば、効率向上により省エネルギー効果が得られるだけでなく、インシシャルコストやランニングコストの削減効果も得られる可能性がある。しかし、現状の改修設計では、新築時と同様の機器容量が選定される例がほとんどである。

そこで本研究では、空調熱源システムの機器容量を変更した際のエネルギー面とコスト面の効果を定量化することを目的としてシミュレーションによる分析を行う。

2. 計算モデル概要

作成したモデルのシステム図を図1に示す。本モデルでは2次側負荷や気象データを入力とした。熱源機器は空冷ヒートポンプチラー（AHP）・ターボ冷凍機（TR）・インバーターテーパー冷凍機（ITR）・ガス吸収式冷温水機（AR）を組み合わせ、数種類のシステムを想定して計算できるように構築している。シミュレーションでは、各熱源機器（図1中のR1〜R5）及び各熱源機器に対応するポンプ・冷却塔の容量変更を行う。

2.1 イニシャルコストの算出

各熱源機器・ポンプのインシシャルコストを算出する1)。参考とした熱源機器のコストを表1に示す。なお、インシシャルコスト（表1中の機器価格）は本体価格の他、搬入費・取付け費等も含む金額である。また、各機器の修繕費（15年分）も合わせて算出し積算する。

2.2 ランニングコストの算出

1年間でかかる電気料金・ガス料金をシミュレーションで計算されるエネルギー消費量を基に算出する。電気料金は東京電力の料金プラン（業務用季節別時間帯別電力（契約電力500kW以上））2)を参考にした。また、ガス料金は東京ガスの料金プラン（空調用A契約）3)を参考にした。

表1 熱源機器コスト

<table>
<thead>
<tr>
<th>機器能力[kW]</th>
<th>機器価格[万円]</th>
<th>修繕費(15年間)[万円]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>1,200</td>
<td>216</td>
</tr>
<tr>
<td>TR</td>
<td>2,180</td>
<td>850</td>
</tr>
<tr>
<td>TR</td>
<td>2,220</td>
<td>910</td>
</tr>
<tr>
<td>AR</td>
<td>3,840</td>
<td>1,267</td>
</tr>
<tr>
<td>AR</td>
<td>1,110</td>
<td>466</td>
</tr>
<tr>
<td>AR</td>
<td>1,880</td>
<td>732</td>
</tr>
</tbody>
</table>

空気調和・衛生工学会大会学術講演論文集 | 2015.9.16～18（大阪）|
第2巻
3. 熱源機器更新時の機器容量決定手法

改修時には負荷率の年間分布が変わっていることから負荷データを用いて簡単な計算を行い、負荷傾向に合った機器容量を選択することで効率良く運転できるシステムを構成する手法を検討した。まず、最大負荷を1とした場合に発生する負荷を一定の負荷比率毎に積算し全体に対する割合を求める(積算熱負荷比率)。冷凍能力を基準に機器容量比率のパターン(例えば4:3:2:1など)をいくつか設定し、各負荷比でシステム COP を概算した後、積算熱負荷比率で加重平均することで冷房期の平均システム COP を求める。暖房期ではあらかじめ合計加熱能力から冷暖房併用機器の分を差し引いたものとし、積算熱負荷比率で加重平均することにより各負荷比率でのシステム COP よりエネルギー消費量を概算し、それが最小となる機器容量の比率を最適な機器容量として採用する。

4. ダウンサイジング効果の検討

4.1 機構構成の設定

ダウンサイジングによって省エネルギー効果以外にピークカット効果やインフラコスティ削減効果も得られる可能性がある。より一般的なダウンサイジング効果を求めるため、機器性能の違いや電気式・ガス式の機器を組み合わせた場合の違い等を検討する必要がある。そのため表2の機器構成について検討した。

4.2 検討ケース

想定した機器構成をもつシステムが更新される時にダウンサイジングしない場合以下、単純更新もしくはCASE#-50(余裕率50%)を基準に、ダウンサイジング手法を2つ設定し効果を比較する。1つ目の手法は余裕率が20%になるように改修前の機器容量比率をベースに全ての熱源機器を一律ダウンサイジングする手法(CASE#-20A)である。2つ目の手法は3節で検討した手法を用いてシステム全体の余裕率が20%になるようにダウンサイジングし、機器容量比率を変更する手法(CASE#-20B)である。入力した負荷分布を図2に、シミュレーション結果を表3に示す。3施設の負荷分布で計算を行った。以下では商業施設の場合をCASE C、医療施設の場合をCASE M、オフィスの場合をCASE Oと表記する。例えばCASE C1-20Aは商業施設の負荷で機器容量を一律変更し余裕率を20%に変更した場合である。

4.3 省エネルギー効果・ピークカット効果

商業施設における各CASEの年間エネルギー消費量を図3に冷房期におけるエネルギー消費量を図4に、暖房期におけるエネルギー消費量を図5に、冷房時期の熱源機器のエネルギー消費量を図6に、1次側ポンプのエネルギー消費量を図7に、ピーク負荷時の消費電力を図8に示す。年間で最も省エネルギー効果があったのはCASE C1-20Bで7.8%であった。冷房期の熱源機器のCOPの大小はAR<AHP<TRである。ダウンサイジングすることでCOPの低い機器ARの処理熱量の割合が増えるためCASE C3-20AやCASE C4-20Aではエネルギー消費量が増加する。1次側ポンプはダウンサイジングによって

<table>
<thead>
<tr>
<th>表2 機器構成</th>
<th>CASE #1</th>
<th>CASE #2</th>
<th>CASE #3</th>
<th>CASE #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>TR(2.3)</td>
<td>AHP(1.5/1.5)</td>
<td>TR(2.3)</td>
<td>AHP(1.5/1.5)</td>
</tr>
<tr>
<td>R2</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
</tr>
<tr>
<td>R3</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
</tr>
<tr>
<td>R4</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
<td>TR(2.3)</td>
</tr>
<tr>
<td>R5</td>
<td>TR(0.87)</td>
<td>AR(1.3/0.87)</td>
<td>AR(1.3/0.87)</td>
<td>AR(1.3/0.87)</td>
</tr>
</tbody>
</table>

※(内)は1次換算熱源機器COP
※冷暖房併用機器であるAHPとARは冷房時暖房時の順でCOPを記載
定格容量が小さくなるため稼動した際のエネルギー消費量も小さくなる。そのため、ダウンサイジングによって搬送系のエネルギー消費量は減少する傾向にある。ガス式の冷凍機（AR）と電気式の冷凍機（TR）を比較すると、同容量ではガス式のほうが多くの冷凍水を必要とするため、冷却水ポンプのエネルギー消費量が大きい。最後に稼動する機器がガス式の機器の場合、ダウンサイジングによって1次側ポンプのエネルギー消費量が増加する可能性がある（例えば図7中CASE C4-20A）。暖房期の熱源機器のCOPの大小はARボイラー＝AHPである。ボイラーより付随するポンプの機器容量が特に大きいため、CASEC1では、ダウンサイジングによって1次側ポンプのエネルギー消費量が大きく減少する（図5中CASE C1-20A・CASE C1-20B）。その他の機器構成の場合は、2台目以降稼動する機器のCOPが1台目の機器に比べ低いか同じであるため、ダウンサイジングによる省エネルギー効果は小さい（CASE C2-20A、CASE C3-20A、CASE C4-20A）。ただし、COPが高いAHPの機器容量を大きくしたCASEでは、低COP機器の処理熱量の割合が小さくなり、省エネルギー効果が得られている（CASE C2-20B、CASE C4-20B）。

ダウサイジングによる冷房期のピークカット効果はCASE C3-20Aが最大で、9.7%である。ガス式の機器を含むシステムでピークカット効果が高い。ダウサイジング

表3 ダウンサイジング効果まとめ

<table>
<thead>
<tr>
<th>冷房期のエネルギー消費量</th>
<th>冷房期のピークカット（％）</th>
<th>ピークカット合計値</th>
<th>能率値</th>
<th>インシャウスト（万円）</th>
<th>システム合計コスト（万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE C1-20A</td>
<td>8.191</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C1-20B</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C2-20A</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C2-20B</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C3-20A</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C3-20B</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C4-20A</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
<tr>
<td>CASE C4-20B</td>
<td>14,407</td>
<td>19,102</td>
<td>17,977</td>
<td>1,125</td>
<td>1,050</td>
</tr>
</tbody>
</table>

図3 年間エネルギー消費量

図4 冷房期のエネルギー消費量

図5 暖房期のエネルギー消費量

図6 冷房期の熱源機器のエネルギー消費量

図7 冷房期の1次側ポンプのエネルギー消費量

図8 冷房期のピーク電力消費量

8.4.1.2 定格容量が小さくなるため稼動した際のエネルギー消費量

8.4.1.3 ガス式の冷凍機（AR）と電気式の冷凍機（TR）を比較すると

8.4.1.4 同容量ではガス式のほうが多くの冷凍水を必要とするため、冷却水ポンプのエネルギー消費量が大きい。

8.4.1.5 最後に稼動する機器がガス式の機器の場合、ダウンサイジングによって1次側ポンプのエネルギー消費量が増加する可能性がある（例えば図7中CASE C4-20A）。暖房期の熱源機器のCOPの大小はARボイラー＝AHPである。ボイラーより付随するポンプの機器容量が特に大きいため、CASEC1では、ダウンサイジングによって1次側ポンプのエネルギー消費量が大きく減少する（図5中CASE C1-20A・CASE C1-20B）。その他の機器構成の場合は、2台目以降稼動する機器のCOPが1台目の機器に比べ低いか同じであるため、ダウンサイジングによる省エネルギー効果は小さい（CASE C2-20A、CASE C3-20A、CASE C4-20A）。ただし、COPが高いAHPの機器容量を大きくしたCASEでは、低COP機器の処理熱量の割合が小さくなり、省エネルギー効果が得られている（CASE C2-20B、CASE C4-20B）。

ダウンサイジングによる冷房期のピークカット効果はCASE C3-20Aが最大で、9.7%である。ガス式の機器を含むシステムでピークカット効果が高い。ダウサイジング
グによりピークカット効果が得られなかったのは CASE C1-20A と CASE C4-20B である。ピーク電力を算出する際、各 CASE 間で条件を統一するため最大負荷が発生した時刻（商業施設では 8 月 24 日 11 時からの 30 分間、医療施設では 7 月 30 日 8 時 30 分から 30 分間、オフィスでは 8 月 4 日 10 時 30 分からの 30 分間）での消費電力をピーク電力としている。CASE C1-20A と CASE C1-50 の当該時刻の処理熱量は本格的差がでたが計算誤差によりシミュレーション上は完全には一致しておらず、CASE C1-20A のほうがやや多くの熱を処理していたため、ピークカット効果が得られなかったと考えられる。

4.4 省コスト効果

商業施設における年間ランニングコストを図 10 に、インシダラコストを図 11 に、15 年間のコストを図 12 に示す。年間ランニングコスト削減効果の最大は CASE C2-20B における 10%、インシダラコスト削減効果の最大は CASE C2-20A における 16%、15 年分のコストを積算した全コストの削減効果の最大は CASE C1-20A における 10.4%であった。CASE C2-20B でランニングコスト削減効果が大きかった要因は空冷ヒートポンプ水冷機器の容量を大きくしたことによる暖房期のガス消費量削減が大きいためである。15 年間では CASE C1-20B は最も省エネルギー効果が高くインシダラコスト削減効果も大きいため、コスト削減効果が高い。4.5 省エネルギー効果と省コスト効果

省エネルギー効果と省コスト効果の関係を図 13 に示す。ダウンサイジングによる省エネルギー効果は平均で 4.3%、省コスト効果効果は 7.5%であった。省エネルギー効果と省コスト効果が得やすいシステムは CASE #1 や CASE #2 のように機器間の COP に大きな差がないシステムである。一方、最後に稼動する機器がガス式の機器で COP が低い場合、省エネルギー効果が得にくい傾向がある。5. まとめ

ダウンサイジングによる省エネルギー効果は最大で 9.3%、ピークカット効果は 19.8%、省コスト効果は 11.4%であった。負荷分布によってもダウンサイジングに向いているシステムは全ての機器の COP と同じかつ定速機器である系统は機器容量を一律ダウンサイジングする手法でも高い省エネルギー効果及び省コスト効果が得られるためダウンサイジングに向いている。