北海道における二、三の浅成鉱脈の含石膏変質帯について

牛沢信人

1. 緒 言

北海道の多数の浅成鉱脈鉱床において、石膏の産出が認められることは珍しくない。たとえば、大江鉱床の鉱床生成末期に石膏の産出することを、すでに詳細に報告されている（浦島ほか、1967）。しかし、石膏の母岩変質作用の産物を含む鉱床については、従来、あまり注意が払われていなかった。北海道の多数の浅成鉱脈の母岩の変質帯を検討すると、含石膏変質帯は、特に優勢に、顕著に発達しているわけではないが、種々の型の鉱脈において認められ、鉱化作用に密接な関係があると考えられる。筆者は、このような含石膏変質帯の存在に気付き、その産状を検討しているが、本報告では主に大江鉱山・稲倉鉱床における石膏変質帯の産状を述べ、他の鉱床の場合に言及し、鉱化作用との関係を考察する。

2. 石 膏 の 同 定

変質帯における石膏の存在とその同定については、肉眼観察と顕微鏡観察のほかに、変質岩試料のX線粉末試験・示差熱分析試験によった。X線粉末試験の若干例を第1図に示す。また、示差熱分析試験の例を第2図に示す。これらの示差熱分析においては、200℃未満の温度範囲において反応を完了する、第2回の示差熱ピーク（吸熱反応）が認められ、石膏の特徴を示すものである（MACK ENZIE, 1962）。この吸熱反応は、石膏の含有量が少ない場合にも認められ、第3回の示差熱ピーク（吸熱反応）の存在する場合でも、同定のためには妨げとならない。

* 1968年3月25日受理
** 北海道大学工学部

第18巻（6）　鉱山地質　第92号
1968

論説および報告

北海道における二、三の浅成鉱脈の含石膏変質帯について

牛沢信人

3. 含石膏変質帯の産状

含石膏変質帯が inkl わって典型的にみられるのは、稲倉鉱床新生脈、とくにその東部と、大江鉱床千歳脈の西部である。さらに稲倉鉱床では金勢脈・大盛願の北壁 сторон に珍稀な石膏変質帯が認められる。本鉱床・イト

第1図 X線粉末線図

第2図 同期熱分析試験
A：稲倉石 1-13（石膏・鎌雲母）、B：大江 3-9（石膏・鎌雲母）、C：豊羽 1-1（石膏・石英・鎌雲母・緑泥石）、D：本庫 2-4（石膏・鎌雲母・石英）、E：千歳 1-29（石膏・鎌雲母）、F：イトムカ 1-13（イライト・モンモリロナイト不規則混合層鉱物・石膏・石英、牛沢、1964）、G：八雲 1-31（アフレン・ギプサイト）。

第1表 ディッカイト・ナクライトのX線粉末回折

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
<th>B</th>
<th></th>
<th>C</th>
<th></th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>dÅ</td>
<td>I</td>
<td>dÅ</td>
<td>I</td>
<td>dÅ</td>
<td>I</td>
<td>dÅ</td>
<td>I</td>
</tr>
<tr>
<td>7.16</td>
<td>10</td>
<td>7.23</td>
<td>100</td>
<td>7.23</td>
<td>10</td>
<td>7.10</td>
<td>100</td>
</tr>
<tr>
<td>4.462</td>
<td>0.5</td>
<td>4.46</td>
<td>11</td>
<td></td>
<td></td>
<td>4.40</td>
<td>15</td>
</tr>
<tr>
<td>4.439</td>
<td>4</td>
<td>4.39</td>
<td>5</td>
<td>4.38</td>
<td>7</td>
<td>4.35</td>
<td>23</td>
</tr>
<tr>
<td>4.37</td>
<td>4</td>
<td>4.28</td>
<td>5</td>
<td>4.28</td>
<td>*23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.131</td>
<td>7</td>
<td>4.13</td>
<td>24</td>
<td>4.12</td>
<td>6</td>
<td>4.11</td>
<td>25</td>
</tr>
<tr>
<td>3.95</td>
<td>2</td>
<td>3.96</td>
<td>8</td>
<td>3.96</td>
<td>1</td>
<td>3.91</td>
<td>6</td>
</tr>
<tr>
<td>3.795</td>
<td>6</td>
<td>3.79</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.587</td>
<td>10</td>
<td>3.59</td>
<td>100</td>
<td>3.59</td>
<td>9</td>
<td>3.57</td>
<td>80</td>
</tr>
<tr>
<td>3.427</td>
<td>3</td>
<td>3.43</td>
<td>12</td>
<td>3.44</td>
<td>2b</td>
<td>3.46</td>
<td>6</td>
</tr>
<tr>
<td>3.27</td>
<td>2</td>
<td>3.35</td>
<td>**34</td>
<td></td>
<td></td>
<td>3.33</td>
<td>2</td>
</tr>
<tr>
<td>3.17</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.11</td>
<td>3</td>
</tr>
<tr>
<td>3.101</td>
<td>2</td>
<td>3.07</td>
<td>6</td>
<td>3.07</td>
<td>3</td>
<td>3.05</td>
<td>8</td>
</tr>
<tr>
<td>2.938</td>
<td>2</td>
<td>2.95</td>
<td>4</td>
<td>2.93</td>
<td>1</td>
<td>2.92</td>
<td>2</td>
</tr>
<tr>
<td>2.794</td>
<td>2</td>
<td>2.79</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.67</td>
<td>2</td>
</tr>
<tr>
<td>2.56</td>
<td>4</td>
<td>2.56</td>
<td>12</td>
<td>2.59</td>
<td>2</td>
<td>2.56</td>
<td>2</td>
</tr>
<tr>
<td>2.51</td>
<td>5</td>
<td>2.52</td>
<td>12</td>
<td>2.52</td>
<td>3</td>
<td>2.52</td>
<td>7</td>
</tr>
<tr>
<td>2.46</td>
<td>**6</td>
<td>2.43</td>
<td>6</td>
<td>2.43</td>
<td>20b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.376</td>
<td>2</td>
<td>2.39</td>
<td>26</td>
<td></td>
<td></td>
<td>2.39</td>
<td>18</td>
</tr>
<tr>
<td>2.322</td>
<td>9</td>
<td>2.33</td>
<td>38</td>
<td>2.31</td>
<td>1</td>
<td>2.32</td>
<td>6</td>
</tr>
<tr>
<td>2.28</td>
<td>5</td>
<td>2.29</td>
<td>1</td>
<td>2.28</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.212</td>
<td>2</td>
<td>2.211</td>
<td>7</td>
<td>2.26</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.106</td>
<td>1</td>
<td>2.128</td>
<td>**9</td>
<td>2.09</td>
<td>2b</td>
<td>2.103</td>
<td>2</td>
</tr>
<tr>
<td>2.025</td>
<td>0.5</td>
<td>2.011</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.975</td>
<td>5</td>
<td>1.98</td>
<td>**27</td>
<td>1.95</td>
<td>2</td>
<td>1.97</td>
<td>2</td>
</tr>
<tr>
<td>1.937</td>
<td>1</td>
<td>1.93</td>
<td>2</td>
<td>1.92</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.898</td>
<td>2</td>
<td>1.90</td>
<td>4</td>
<td>1.89</td>
<td>1</td>
<td>1.89</td>
<td>4</td>
</tr>
<tr>
<td>1.859</td>
<td>3</td>
<td>1.86</td>
<td>7</td>
<td>1.80</td>
<td>1</td>
<td>1.79</td>
<td>5</td>
</tr>
</tbody>
</table>

注）**: 石英+ディッカイト，****: 石英
A：ディッカイト，Newham and Brindley (BROWN, 1961)，B：ディッカイト，大江鉱床，C：ナクライト，Leicestershire，England (BROWN, 1961)，D：ナクライト，稲倉石鉱床
合、石英-石膏-透雲母、または石英-カオリノイド-石膏である。上述のカオリノイド変質帯の存在は、上国・本郷・豊羽などの諸鉱床においても認められる。

大江鉱床のカオリノイド化作用は、石膏化作用と同様に千歳帯西部に、稲倉石鉱床では新生脈東部に著しく、同時に金亀・太盛帯の北帯側にも微弱ながら発達し、千歳帯の一部にはディッカイト、新生脈にはナクライトが存在する（第1表）。

上国鉱床においては、6号脈のカオリノイド作用が著しい。八雲鉱床でも5号脈にプロフェン・ギブサイトの生成がみられる（第1図H、第2図G、写真2）が、これらは最末期の割目を充填した様相を示し、上述の大江、
稲倉石のカオリン化作用と絞べて生成時期が著しく異なり、5号脈については石膏化変質作用はみられない。
変質带における石膏の鏡下における産状については、一般的には、石膏-石英-銅雲母、石膏-カオリン-石膏などの組合せを示す。石膏は、写真3-10に示すように、単結晶粒状・結晶集合状・雪花石膏状・繊維状・放射状などさまざまな形態で産出し、石英-銅雲母と密雑し（写真3, 4）、カオリン中に（写真7）放射状をなし、または硫化鉄物-菱マンガン鉱（写真8, 9, 10）に交代されているような形で産出す。少量の重晶石が変質帯の中で石膏と共存する場合（写真5, 6）もあり、この場合に、重晶石の形成は、石膏と同時期とみられ、切ったり切られたりの明瞭な相互関係を示さない。したがって石膏-重晶石変質と称することが可能だ。

4. 考察
変質作用には、種々の原因によるものががあるが、溶解作用に密接な関係を有する変質作用は、鉱化変質と呼ばれている。鉱石鉱物を沈澱した鉱液が、現実に、どの程度の変質作用を及ぼしたかについては、充分に知られていない鉱床の多いことも指摘されている（長沢、1968）。鉱化変質によるもののかを調べ、ほとんど不明のままであるといってもよい。

上に述べた石膏の巨視的・微視的産状からみて、変質帯中の石膏の産状は、明らかに鉱化作用と密接な関係のある鉱化変質で、しかも鉱石鉱物の沈澱に先駆けて行なわれた変質作用の一部であると考えられる。

大江・稲倉石鉱床では、鉱化に先立つ先駆作用として、広い範囲に珪結化作用が及び、この珪結化帯は、堅硬さのゆえに剪断作用による鉱床形成の割目の場をなしたものであろう。

珪結帯は、剪断作用によって裂開され、その空所を塩着するように、カオリン化作用・石膏-重晶石化作用が行なわれた。これらの作用は、その産状からみて鉱化帯全般に及ぶものではなく、鉱脈に接するきわめて局所的な場所のみ行なわれ、このような場所は、とくに鉱化の優勢な中心であったとも考えられる。

カオリン化、カオリサイトのほかに一部にナタライト・ディッカイトの存在が認められるが、生成時の圧力速は考え得ないから、温度・pHの差によってこれらの異像が形成されたものであろう。稲倉石のナタライトは、鉱脈の腹に沿い単体に、薄い帯状に入りこんで産し、それが明らかに溶液から沈澱したとみられる産状を示している。

カオリン・石膏・重晶石に続いて、銅雲母化が行なわれ、後期の銅雲母（写真6）は結晶度がよく複屈折も大きく、これをほぼ同時に塩結核が生成している（牛崎、1964a）。このことは、鉱化液が酸性のまま温度を上昇していたのではあるまいと（STRINGHAM, 1952, 武司, 1958)。

時をおいて鉱液は、アルカリ性に転じ CO2ガス圧の
5. 結論

鉱脈鉱床の、いわゆる母岩の変質作用に関して、石膏・重晶石などの硫酸塩鉱物化作用に関し、特に注意をはらわれたことは、従来ほとんどなかった。著者は、多くの浅成鉱脈鉱床、特に鉱石・亜鉱などの非金属鉱脈において、一般に弱弱ではあるが、石膏化作用は穏なものではないことを指摘した。

石膏化作用は、常に、カルツン化作用を伴い、プロピタライト化、珪化などの広範な変質作用のもの、鉱脈形成の初期に、脈巣に局所的に行なわれている。この作用は、産状から化作用とは密接な関係を有するが、鉱化作用の中心または化作用段階の中心で行なわれたとはいいえない。

この変質作用が典型的にみられる大江鉱床干潟鏡西部や、稲倉石鉱床新生部東部では、石膏化作用が続き、一部にパイロフィライトなどが生成している。

その後、アルカリ性鉱液による炭酸塩鉱物化作用や、炭酸塩鉱物・硫化鉱物などによる剖面の変質が行なわれた。以上の関係を概念的に図式化すると次のようになる。

文献

井上光夫ほか (1959) : 稲倉石鉱山のマンガン鉱床. 鉱山誌, 9(36), 360~368.

武司秀夫 (1938) : 壊石中のカルツン鉱物について. 鉱物誌, 3(5), 388~405.

浦島幸世ほか (1967) : 大江鉱床の硬石膏と石膏. 鉱誌, 23(6), 11~18.

牛沢信人 (1964 b) : イトムカ鉱床のイナイト鉱不規則混合層鉱物. 北鉱誌, 20(6), 288~289.
On the Gypsum-Bearing Alteration along Some Epithermal Veins in Hokkaido

by

Nobuto Ushizawa

Abstract

Few attention has been paid to the sulfatization of the wall rock alteration by gypsum and barite along epithermal base-metal veins. In some of lead-zinc-bearing rhodochrosite veins, however, gypsum and barite are not rare in association with sericite-quartz aggregates and more intimately with kaolinite. Typical examples are observed on the hydrothermal zones of Senzai vein, Ōe mine and Shinsei vein, Inakuraishi mine. Since gypsum is replaced by sulfide minerals and rhodochrosite, gypsum-bearing hydrothermal alteration together with kaolinization may have occurred in a sericite-quartz zone prior to the carbonatization and deposition of ore minerals.