坑内軟弱地層の水平掘削におけるエアープローレ工法*

藤 盛 多 一 郎**

1. 沿 革

花岡鉱山は明治初年に発見と伝えられている。明治 18年石炭・塩沢・観音塚に土鉱（露頭）を発見し、その後所有者の変更を経て、明治 44年林鉱業が営業し、大正 3年に上灌引き試鉱により慶年鉱床を発見、大正 4年当社（藤田組）の営業に移り、鉱業試験探鉱の結果大正 5年に堂屋数。更に神山・七塚・観音堂・落合沢・大石沢等の隠匿鉱床が逐次発見され、今日の基礎を築いた。昭和 38年に松鱗鉱床が試掘により発見され、現在月産鉱石 8万 9,000t を出鉱する本邦第一の鉱山となった。

2. 地質概況

花岡鉱山は新第三世中新世に属する緑色凝灰岩地域に位置する。鉱床礫層準層は中新期西黒沢階に相当し、当地では花岡層とよばれている。花岡層は白色化疊紋岩・流紋岩質火山砂屑岩よりなるが、鉱床はこの流紋岩質火山砂屑岩を母岩としている。北東地域の鉱床母岩では、特に鋼帯母・モンモリヨナイト混層岩の産出が著しく、銅帯母および縄結石中にモンモリヨナイトとの混合層物が普遍的に見出される。花岡層凝灰岩（鉱床層準凝灰岩）は全域に発達し、不調は深緑色凝灰岩中に同時期に活動した石英安山岩の角礫を産するのが特徴で、角礫の大きさ量などはかなりの差を生じている。すなわち含有角礫の量およびサイズが減少したり、角礫に富んだゾーンが凝灰岩だけから成るゾーンをはさみに認められたり、磁気性凝灰岩の一部を普通に産したり、また変質相がセリサイト、クロライト相からモンモリヨナイト相に変わる、鉱床地域では全般的に変質が著しく軟岩の分布が広く発達している。

3. 花岡鉱山における試験の歴史

花岡鉱山が鉱床の探査に試鉱を用いたのは大正 2年である。当時上灌引き 7台により深度 30m 前後の掘削を

* 1970年 5月 21日、日本鉱業協会第 17回全国鉱山探査現場担当者会議で講演。
** 同和鉱業株式会社 花岡鉱業所

鉱山地質、20 (100), 197〜201, 1970。

昭和 4年に請負（明間ボーリング）が、動力上灌掘（伊藤式）を使用した。当所でも約 15 同方式で、掘進能率も従来の方式当り 0.3m から 0.8m まで上昇し、本機が昭和 25年までの長い期間にわたって使用され、深度も150m 前後を越えた。七塚＝観音堂＝落合沢、その他多くの鉱山鉱床を発見した。

この間昭和 11年には利根 R-500 型、RL-150 型の回転式 2台を導入した。当時は衝撃式に比較して能率が悪く、台数の増加が見られなかったが、昭和 17 年落合沢鉱床の発見により、従来のスライムより初めて鉱石カーペーの採取がなされた。

昭和 26年、鉱床準層相互関係判定の必要を知った、利根 R-300 型を主体とする回転式 10台を導入し、伊藤式 2台とともに深度も 170m の掘削を行った。またこの年に坑内試験を開始した。昭和 29年更に台数を増加して、全面的に回転式に切り替えた。

一方、抗外採鉱の請負作業を続行している昭和 30年 3月も昭和 32年には、伊藤式から回転式に切り替え、更に昭和 38年大型採鉱 TB--M 機を導入、掘削深度 400m、スピードも当り 5m が可能となり、同年深度 300m で松崎鉱床の発見が得られた。同社は昭和 40年にはワイヤーライン工法の試用から始め、昭和 42年全面的に同工法を採用し、能率当り 10m、採鉱採取率 90％と好成績を得ている。

直接による作業は、坑内外について行なっていたが、昭和 38年より全面的に抗内試験に移行し、水平掘りを主体に行なわれたが、粘土質層の孔中の酸じゅん・崩壊等によるトラブルが多く、昭和 40年ころより種々泥水剤を併用し効果を上げるとともに、作業方法も昭和 41年ワンマン作業に切り替え、更に昭和 43年より能率および、採鉱採取率向上を目的として、エアープローレ工法の試用を行ない今日に至った。

現在までの実績（大正 7年〜昭和 43年 3月末）

内外別 試験本数 累計延m
4. エアープローチ工法

黒鉄鉱床における坑内試掘は、鉱体周辺の粘土質層による膨潤のため、コア採取率の不良および抜孔・ケーシング挿入などの要素を考慮して坑内掘削作業が制約された。パイプライン工法の適用によっても、循環泥水の効果が低く、またコッドの圧迫によって問題点を解決することができなかった。当所では昭和43年4月からエアープローチ工法を試用

第2表 岩種別・孔径別・コア採取率

<table>
<thead>
<tr>
<th>岩種名</th>
<th>口径 (mm)</th>
<th>100</th>
<th>85</th>
<th>75</th>
<th>65</th>
<th>55</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>安山岩</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>安山岩</td>
<td>98</td>
<td>97</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>流紋岩</td>
<td>87</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>流紋岩</td>
<td>97</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>褐灰岩</td>
<td>70</td>
<td>60</td>
<td>47</td>
<td>40</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>褐灰岩</td>
<td>93</td>
<td>80</td>
<td>75</td>
<td>50</td>
<td>35</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>褐灰岩</td>
<td>65</td>
<td>50</td>
<td>45</td>
<td>35</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>角礫巖</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>角礫巖</td>
<td>60</td>
<td>55</td>
<td>40</td>
<td>32</td>
<td>25</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>角礫巖</td>
<td>97</td>
<td>92</td>
<td>90</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>50</td>
</tr>
</tbody>
</table>

4-1 エアープローチ工法の工程について

(1) 第2表は普通工法における花岡鉱山の岩種別、
第3表 各種工法による試験成績表

<table>
<thead>
<tr>
<th>項目</th>
<th>選択工法</th>
<th>試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>送水工法</td>
<td>シンプルコーナーターン成績表</td>
</tr>
<tr>
<td>T-S-6</td>
<td>L-26個 306号</td>
<td>60.60</td>
</tr>
<tr>
<td></td>
<td>L-26個 307号</td>
<td>66.60</td>
</tr>
<tr>
<td></td>
<td>L-26個 309号</td>
<td>87.80</td>
</tr>
<tr>
<td></td>
<td>L-26個 361号</td>
<td>256.00</td>
</tr>
<tr>
<td>B</td>
<td>鉄工方法</td>
<td>シンプルコーナーターン成績表</td>
</tr>
<tr>
<td>T-S-6</td>
<td>L-6個 118号</td>
<td>56.90</td>
</tr>
<tr>
<td></td>
<td>L-6個 145号</td>
<td>82.90</td>
</tr>
<tr>
<td></td>
<td>L-16個 189号</td>
<td>58.90</td>
</tr>
<tr>
<td>C</td>
<td>エアーパー工法</td>
<td>シンプルコーナーターン成績表</td>
</tr>
<tr>
<td>L-24</td>
<td>L-24個 421号</td>
<td>70.40</td>
</tr>
<tr>
<td></td>
<td>L-24個 423号</td>
<td>45.90</td>
</tr>
<tr>
<td></td>
<td>L-24個 426号</td>
<td>47.90</td>
</tr>
<tr>
<td></td>
<td>L-24個 428号</td>
<td>342.00</td>
</tr>
<tr>
<td>D</td>
<td>エアーパー工法</td>
<td>シンプルコーナーターン成績表</td>
</tr>
<tr>
<td>L-24</td>
<td>L-24個 432号</td>
<td>60.20</td>
</tr>
<tr>
<td></td>
<td>L-24個 434号</td>
<td>22.00</td>
</tr>
<tr>
<td></td>
<td>L-24個 438号</td>
<td>51.20</td>
</tr>
<tr>
<td></td>
<td>L-24個 439号</td>
<td>47.90</td>
</tr>
<tr>
<td></td>
<td>L-24個 440号</td>
<td>62.90</td>
</tr>
<tr>
<td></td>
<td>L-24個 443号</td>
<td>56.80</td>
</tr>
<tr>
<td></td>
<td>L-24個 445号</td>
<td>53.20</td>
</tr>
<tr>
<td></td>
<td>L-24個 450号</td>
<td>74.0</td>
</tr>
</tbody>
</table>

地質概況（数字はm）

A1	0〜粘土質	29.00〜32.00	35.00〜40.00	46.00〜60.00	60.00〜基面	70.00〜基面	90.00〜基面
A2	0〜粘土質	29.00〜32.00	35.00〜40.00	46.00〜60.00	60.00〜基面	70.00〜基面	90.00〜基面
A3	0〜粘土質	29.00〜32.00	35.00〜40.00	46.00〜60.00	60.00〜基面	70.00〜基面	90.00〜基面
A4	0〜粘土質	29.00〜32.00	35.00〜40.00	46.00〜60.00	60.00〜基面	70.00〜基面	90.00〜基面
A5	0〜粘土質	29.00〜32.00	35.00〜40.00	46.00〜60.00	60.00〜基面	70.00〜基面	90.00〜基面

注）エアーパー工法について（1）プレートピット改良も兼ねているのでコーナー採取が変動している。
（2）試験岩の密度が入射する場合が多い。（50〜60%）
（3）試験岩の密度が基面を含まない。
孔径別のコアー採取率で、粉状鉱および粘土質層については20～30％で著明に不良である。
（2）第3A・3B表は従来行なっている普通工法による送り水掘りとドライ掘り各5孔の平均比較である。送
水掘りはコアー採取率40％と不良で、ドライ掘りは、
採取率が約100％であるが、能率が前者の1.8m/工に対
し、0.8m/工で著明に悪く、その他ソールの摩耗、機械
の消耗度の增大、作業員の疲労度増大で期待する結果を
得られなかった。
（3）第3C・3D表はエアープローマ工法のシンクルコ
アーチューブとダブルコアーチューブの成績表である。す
なわちダブルコアーチューブの使用により、4.4m/工コ
アー採取率は74%で能率、採取率とも一応満足する結
果を得られた。
4.2 この工法の特徴について
（1）従来のドライ掘りに圧縮空気を併用し、スライ
ームの除きと、ビットの冷却に役だたせた。
（2）スライームの粉じん防止装置（第1図）を考案し
、海水ホースでタンクに導き、更にウォーターホースを接
続させ、岩用用水を使用し、粉じんの飛散を防
止させた。
（3）メタルクラウンを特殊加工し（第2図）、メタ
ル間に通気孔を設けた。また、メタルの接合を改良し
た。
（4）切削は3mとし、コアーを回収する。
4.3 今後の問題点
（1）粘土層中に互層する硬岩および礫岩のメタルクラウン花形

by

Taichiro Fujimori

Abstract

In order to increase the recovery efficiency of cores, easiness of enlarging holes and overall work efficiencies, the compressed air-blow method has been applied to the conventional air-blow system, by which were effected also the elimination of slime and the cooling of bits.

Scattering of rock dust was prevented by the specially designed device and dust collector tank. Drill bits were improved for this method by use of the specially designed crown with the air holes atop and the improved hard metal arrangements.