DEAE Sepharose CL-6B で吸着著出する際に、triton X-100 を使用している。Triton X-100 は、一定濃度以上でミセルを形成し、試料から取り除くのが困難であり、線毛の活性を測定する際に妨げとなる。本研究では、triton X-100 の代わりに zwittergent を用いて線毛の精製を試みるとともに、部分精製した線毛の性状について検討した。

材料と方法

供試菌株は教室保存の B. intermediais strain 17 を用いた。線毛の分離精製は、大前らの方法で行った。ただし、DEAE Sepharose CL-6B による溶出は、starting buffer に triton X-100 の代わりに 0.05 % zwittergent を加えて行った。標品の精製程度は、比活性と精製線毛で家兎を免疫して得られた抗体血清による二重拡散法で確認した。線毛標品の活性は以下の反応後、線毛標品を 2 倍速連続希釈し、等量の家兎免疫血球と混合して凝集を示した最大希釈度で表わした。

（1）標品の等点沈殿はクロマトフォーカンジングでは求めることができなかったので、1,250 µg/ml の標品をそれぞれ pH 2.0 〜 7.0 に調整した緩衝液で 4 時間透析後、遠心し、上清と沈渣とに分けた。検出は pH 7.0 の緩衝液で浮遊させ、両者とも pH 17.0 の緩衝液で一夜透析したのも、タンパクと活性を測定した。

（2）温度感受性では 500 µl の線毛標品（16 AU）を 60 〜 100°C で、10 〜 30 分間作用させたのち、残りの活性を測定した。線毛の酵素に対する感受性試験では線毛標品 100 µl (1024 AU) に 2 mg/ml の酵素液 0.4 ml を加え、37°C で 1 時間作用させたのち、活性を測定した。

（3）24 種類の糖による赤血球凝集阻止は標品 50 µl (64 AU) に 0.9 M の各種糖液 50 µl を添加し、15 分間振搗して活性を測定した。

（4）抗血清による赤血球凝集阻止実験では 50 µl の線毛標品（16 AU）と 2 倍速連続希釈した抗血清を well に入れ、37°C で反応させたのち、家兎免疫血球を添加して活性を測定した。

結果と考察

1. Blake らの方法に従って、10 mM EDTA 存在下で 0.05 % zwittergent を加えて starting buffer で吸着を行ったのち、NaCl 濃度を増加させた。ついで、starting buffer に 0.05 % の zwittergent を加えて室温で吸着後、溶出すると、線毛画分が得られた。線毛画分の zwittergent は EDTA を添加し、48 時間透析して除去し、精製標品を得た。

2. 二重拡散法では、1 本の沈降線が形成された。

3. 各種 pH の緩衝液で線毛標品を透析した結果、沈渣のタンパク量は pH 5.0 から増加し始め、pH 4.0 付近で最高値に達し、その後減少した。沈渣における活性も pH 4.5 まで増加したが、pH 3.5 で急激に減少し、それ以下の pH では活性はみられなかった。上清のタンパク量は沈渣のタンパク量に増加するとともに減少し、pH 4.5 〜 2.5 まではほとんど検出されず、pH 2.0 で若干増加した。この結果は線毛の等電点が pH 4.0 付近にあり、酸により失活することを示している。

4. 線毛標品を 90°C で 10 分間処理すると、赤血球凝集能は減少し、100°C で 10 〜 30 分間処理すると、活性は消失した。

5. Trypsin により線毛の赤血球凝集活性は減少した。この結果は、線毛の機能がタンパクであることを示している。

6. 糖による赤血球凝集能阻止実験では、D-glucosamine のみが、この凝集能の約 90 % を阻止した。この結果は、線毛に対するレプターに D-glucosamine あるいはその類似構造物が関与していることを示唆している。

7. 精製線毛で家兎を免疫して得た抗血清（1：8）は 16 倍希釈まで凝集を阻止した。

以上の結果から、B. intermediais strain 17 の線毛は等電点が pH 4.0 付近にあり、熱に対して比較的安定なタンパクであり、adhesion としての働きを有すると考えられる。

質問

大浦 栄（大阪歯大・薬理）

線毛の種類、性状と病原性との関連性は？

解答

薩藤尚宏（大阪歯大・細菌）

細菌の付着因子として、各種細菌の線毛、α-レピンサ球菌などのリポタイコ酸、Mタンパク、S. mutans のグリコリックスなどがある。この中で線毛がもっともよく研究されている、線毛があるも病原性が強いと考えられているが、細胞付着に関与しない線毛もあり、さらに研究が必要である。

*9 DNA-DNA ハイブリダイゼーションを用いた Bacteroides intermedius の同定

筸木 充・福島 久典・佐川 寛典

（大阪歯大・細菌）

目的

Bacteroides intermedius は、進行性成人性歯周病患者の歯周ポケットや閉鎖性膿瘍などから高頻度に検出
されること、単独で実験動物に臓器を形成できることなどが、これらの疾患の原因菌の一つと考えられている。

しかし、実際の臨床材料から黒色素産生性 Bacteroides を分離する場合、他の性状は B. intermedius と一致するか、key 性状の lactate 発酵性が異なる菌株にしばしば遭遇する。また通常の方法で B. intermedius と同定された菌株には、粘液物質、lecithinase, β-lactamase 産生性が異なるものも多い。

本実験ではこれらの臨床分離株と ATCC 株との間の DNA 相同性を明らかにするとともに、定量的 DNA-DNA ハイプライダイゼーション法により、B. intermedius 間の同一性についても併せて検討した。

実験材料と方法
1. 供試菌株
 教室で保存している歯周ポケットからの分離株26株、根尖部周囲からの分離株 4 株および小児の唾液からの分離株 7 株、合計37株の B. intermedius を使用した。標準菌株として、B. intermedius ATCC25611、ATCC15032、ATCC25621 ATCC33563 の 5 株と B. intermedius 以外の黒色素産生性 Bacteroides として、B. asaccharolyticus ATCC25260、B. corporis ATCC33547、B. denticola ATCC33185、B. endodontalis ATCC33406、B. gingivalis ATCC33277、B. leviatus ATCC29147、B. loeschei ATCC15930、B. maccaceae ATCC33141、B. melaninogenicus ATCC25845 の type strain を用いた。
2. 輸血化学的性状試験
 保存株が純培養であることを確認したのも、坪井が記載している方法により、糖分解性状、酵素活性性状、プラスミドの有無、ファージの有無、バクテリオン産生性などのスクリーニングを行った。
3. DNA の分離、精製
 各菌株からの DNA の抽出は、Marmur の方法に従って行い、RNase で処理したのち、260 nm と 280 nm における吸光度を測定することにより純化の程度を確認した。
4. DNA-DNA ハイプライダイゼーション
 Ezaki らの方法に従い、フィルター法およびマイクロプレート法で DNA 相同性を測定した。マイクロプレート法では、分離した DNA をマイクロプレートの各 well に固定し、ロジオシナーゼ標識した DNA との相同性を蛍光強度で測定した。
5. SDS-PAGE
 超音波破砕した供試菌は、SDS を 2 % の割合で含むサンプルパッファーに浮遊させ、100℃、5 分間加熱後、遠心し、上清の 40 μl を通法に従い、SDS-PAGE に供試した。
6. 電子顕微鏡観察
 各菌株を 2 % 酢酸風化でネガティブ染色を行い、加速電圧 100 kV で観察した。

実験成績
1. 保存株の性状は、lactose 発酵性を除いて、坪井が記載している性状と一致した。ただし、lactose 発酵株は弱陽性あるいは陰性に転じていた。
2. フィルター法による DNA 相同性試験ではラベルした B. intermedius ATCC25611 と、5 株の ATCC 株および臨床分離株の間に明瞭な相同性がみられた。しかし、他の黒色素産生性 Bacteroides の type strain とは、相同性は認められなかった。
3. マイクロプレート法を用いて供試菌株間で DNA 相同性試験を行ったところ、ATCC25611 と高い相同性を示すグループと ATCC33563 と高い相同性を示す2つのグループに分けられた。
4. SDS-PAGE による菌体可溶性タンパク質の泳動パターンでは、定量的 DNA 相同性試験で分かれた 2 つのグループ間に明確な違いがみられた。
5. B. intermedius の 2 つのグループ間で、明瞭に異なる表現形質を見いただすことはできなかった。

以上のことから、lactose 発酵株も B. intermedius と同定された。したがって Bergey's Manual of Systematic Bacteriology の中で lactose 発酵株が B. intermedius の同定の key 性状となっていることに疑問が残る。マイクロプレート法による定量的 DNA-DNA ハイプライダイゼーション法では、Johnson が報告しているように type strain の ATCC25611 と強い DNA 相同性を示すグループと ATCC33563 と強い DNA 相同性を示すグループに分かれた。しかし、本実験で検索した表現形質の中には 2 つのグループを区別する形質は見いだせなかった。ただ、SDS-PAGE では明確に 2 つのグループを区別できるため、近い将来これらのグループは別の species に分類されるであろう。